Wetenschappelijk onderzoek en technologie vertalen naar onderzoekend en ontwerpend leren in het basisonderwijs

T. van Wessel, M.G. Kleinhans, H. van Keulen en A. Baar
Wetenschappelijk onderzoek en technologie vertalen naar onderzoekend en ontwerpend leren in het basisonderwijs

Dr. T. (Tim) van Wessel,
Dr. M.G. (Maarten) Kleinhans,
Dr. J. (Hanno) van Keulen,
A. (Anne) Baar MSc

April, 2014
Wetenschap en technologie (W&T) zijn niet meer weg te denken uit onze samenleving. Ze zijn de basis van veel alledaagse zaken (smartphones, outdoor-kleding etc.) en dragen bijvoorbeeld bij aan het ontwikkelen van veilige voeding en het verbeteren van de gezondheidszorg. We gaan er bijna vanzelfsprekend van uit dat wetenschap en technologie in de toekomst ook aanwezig zijn om onze wereld te blijven ontwikkelen. De kinderen van nu zijn de wetenschappers van de toekomst en dit betekent dat ze later als volwassene onderzoekend in de wereld moeten staan, dat wil zeggen: nieuwsgierig, kritisch, vragend en betrokken.

Kinderen zijn van nature ondernemend en ontdekken voortdurend nieuwe dingen over zichzelf en de wereld om hen heen. Toch haalt het enthousiasme voor wetenschap het maar bij weinig kinderen tot het volwassen stadium; om met de bekende astronoom Carl Sagan te spreken:

"Every kid starts out as a natural-born scientist, and then we beat it out of them. A few trickle through the system with their wonder and enthusiasm for science intact."

Wetenschappers zijn over het algemeen erg gepassioneerd over het werk wat ze doen. Kinderen zijn dat ook en de manier waarop jonge kinderen leren en denken vertoont overeenkomsten met wat wetenschappers doen (Gopnik et al. 2012). Wetenschappers die enthousiast over hun vak komen vertellen kunnen daarom een geweldig rolmodel zijn voor kinderen en een bron van inspiratie voor leerkrachten. En omdat wetenschappers gezien worden als (externe) autoriteiten, kunnen ze talenten voor wetenschap en technologie ook veel sterker stimuleren dan dat leerkrachten dat kunnen. Wanneer kinderen, geïnspireerd door academici en hun recente onderzoek, op jonge leeftijd in aanraking komen (en blijven) met het proces van wetenschapsbeoefening en het creëren van een onderzoekend houding, dan houden ze dit enthousiasme vast en worden hun talenten gestimuleerd.
Wetenschappers hebben (net als bestuurders, politici en andere actoren in het domein) een verantwoordelijkheid om zich sterk te maken voor de kwaliteit van wetenschap en technologie in het basisonderwijs. Niet alleen vanwege de VWO-leerlingen die mogelijk naar de universiteit gaan, maar omwille van de algemene kennisbasis van Nederland en het draagvlak voor wetenschap en technologie (De Jonge Akademie 2012, Advies Verkenningscommissie W&T 2013). Wetenschappers worden hier dan ook uitgedaagd en ondersteund om hun onderzoek op toegankelijke wijze te presenteren zodat ze een bijdrage kunnen leveren aan de ontwikkeling van onderwijsproducten en lesvormen die op scholen worden ingezet.

Het doel van dit boekje is om aanknopingspunten te vinden om (eigen) wetenschappelijk onderzoek en technologie te vertalen naar het basisonderwijs om op die manier kinderen op jonge leeftijd kennis te laten maken met actuele wetenschappelijke thema’s en het leren onderzoeken en ontwerpen. Het voorliggende stuk bestaat uit twee delen: deel 1 omvat een introductie met een voorbeeld en een handleiding voor wetenschappers die een bezoek willen brengen aan een basisschool. Deel 2 bevat achtergrondinformatie en een verantwoording voor iedereen die geïnteresseerd is in wetenschap en technologie in het basis- en beginnend voortgezet onderwijs. Beide delen kunnen ook bijdragen aan goed academisch onderwijs en onderzoeksdierschap zodat de geïnvesteerde tijd ook in die zin nuttig besteed is.

Dr. T. (Tim) van Wessel,
Dr. M.G. (Maarten) Klein hans,
Dr. J. (Hanno) van Keulen,
A. (Anne) Baar MSc

DEEL 1

Introductie met voorbeeld en handleiding voor een bezoek aan de klas

1.1 Introductie met voorbeeld van een wetenschapper die een basisschoolklas bezoekt

1.1.1 Programma project Rivieren en Delta’s

1.1.2 Introductie in het wetenschapsgebied

1.1.3 Empirische cyclus

1.1.4 Stroomgoot ontwerpen

1.1.5 Stroomgoot bouwen

1.1.6 Bedenken van eigen onderzoeksvragen

1.1.7 Experimenten uitvoeren

1.1.8 Presenteren

1.2 Handleiding voor een bezoek aan de basisschoolklas

1.2.1 Kenmerken en voorwaarden van onderzoekend en ontwerpend leren

1.2.2 Empirische cyclus

1.2.3 Type onderzoek en vragen

1.2.4 Reductie van complexiteit

1.2.5 Onderzoekend en ontwerpend leren als doel en als middel

1.2.6 Didactische voorwaarden voor goed onderwijs

1.2.7 Organisatorische voorwaarden en dimensies

1.3 Voorbeelden van werkvormen en lessuggesties ter inspiratie

DEEL 2

Theorie en achtergrondinformatie voor het beoefenen van Wetenschap en Technologie in het basisonderwijs

2.1 Waarom onderwijs in wetenschap en technologie bij kinderen?

2.1.1 Belang van wetenschap en technologie in het basisonderwijs

2.1.2 Oriëntatie op jezelf en de wereld

2.1.3 Aansluiting bij kerndoelen van het basisonderwijs

2.1.4 Stimuleren van onderzoekende houding

2.1.5 Maatschappelijke relevantie van wetenschap en technologie in het basisonderwijs
2.2 Wetenschappelijk onderzoek vs. onderzoekend en ontwerpend leren bij kinderen

2.2.1 - Wetenschappelijke modellen en theorieën .. 44
2.2.2 - Empirische cyclus .. 45
2.2.3 - Type onderzoek en vragen .. 51
2.2.4 - Reductie van complexiteit in inhoud en uitdrukingsvaardigheden 53
2.2.5 - Onderzoekend en ontwerpend leren als doel en middel 55
2.2.6 - Kenmerken van goed onderwijs in Wetenschap en Technologie 57
2.2.7 - Dimensies voor het plaatsen van Wetenschap en Technologie onderwijs in de basisschool ... 61

Websites .. 66

Literatuur ... 67

Colofon .. 70
Introductie met voorbeeld en handleiding voor een bezoek aan de klas

1.1. Voorbeeld van een wetenschapper die een basisschoolklas bezoekt

Er is al veel ervaring met toegankelijk maken van wetenschap voor het basisonderwijs, onder andere via de verschillende Wetenschapsknooppunten, Science Centra (bijv. Universiteitsmuseum Utrecht, NEMO) en door wetenschappers die scholen bezoeken (bijv. De Jonge Academie on Wheels). Van groot belang bij het stimuleren van talenten van kinderen voor wetenschap en technologie is dat de kinderen de wereld van techniek en onderzoek zelf ervaren. Daardoor kunnen ze nieuwe dingen ontdekken, bedenken ze oplossingen voor problemen en wordt hun belangstelling voor het domein vergroot. Om wetenschappers te inspireren een bijdrage te leveren aan deze ervaringen van kinderen, laten we hier zien op welke wijze geowetenschapper Dr. Maarten Kleinhans een serie bijeenkomsten en materialen ontwikkeld heeft, gebaseerd op zijn eigen onderzoek (zie kader 'De wetenschap achter de activiteiten op de basisschool'). Het doel hiervan is om te laten zien hoe zijn onderzoek toegankelijk is gemaakt voor kinderen van verschillende leeftijden in het basisonderwijs in het project 'Rivieren en Delta's'. In het tweede deel van het hoofdstuk volgt een korte handleiding voor wetenschappers die zelf een bezoek willen brengen aan een basisschool. Het hoofdstuk wordt afgesloten met een aantal voorbeelden van werkvormen en verwijzingen naar lessuggesties die kunnen dienen ter inspiratie om het eigen onderzoek te vertalen naar het basisonderwijs.
Rivieren vormen veranderlijke patronen van geulen, zandbanken en overstromingsvlakten met vegetatie. Typische patronen zijn meanderend, met een enkele geul die grote bochten maakt, zoals de IJssel, en vlechtend, met meerdere geulen gescheiden door zand- of grindbanken, zoals de Waimakariri in New Zeeland. Beide riviertypen zijn dynamisch in de zin dat ze doorlopend veranderen. Dat betekent dat er doorlopend erosie en sedimentatie plaatsvindt, en dat er in sedimenterende gebieden gelaagdheid achtergelaten wordt. De hoofdvraag in mijn Vidi-project is hoe die verschillende patronen precies ontstaan, en de hoofdvraag voor een gerelateerd project is wat voor afzettingen ze achterlaten. Deze vragen zijn relevant voor het voorspellen van veranderingen waardoor oevers afkalven en land verloren gaat, maar ook banken aangroeien en nieuwe natuur ontstaat. Ook zijn ze relevant om de geologische geschiedenis van bijvoorbeeld de Rijn te ontrafelen, en om olie reservoirs te kunnen interpreteren. Parallel hieraan doe ik onderzoek aan rivieren en delta’s op planeet Mars met de vragen wanneer daar water stroomde, en hoeveel dat was, en waardoor dat werd veroorzaakt. Om hypothesen te kunnen testen en variabelen afzonderlijk te kunnen variëren gebruiken we experimenten in stroomgoten (zandbakken - zie bovenstaande figuur) en computermodellen in vergelijking met satellietbeelden en andere data van Aarde en Mars.

Theorie voor rivierpatronen voorspelt dat moeilijk te eroderen klei of vegetatie op de oevers en overstromingsvlakten de rivier smaller en dieper maken. Smallere en diepere rivieren gaan niet vlechten maar vormen zandbanken aan de oevers, om en om links en rechts, wat zou moeten leiden tot meanderen. In de afgelopen halve eeuw bleek dat vlechtende rivieren relatief makkelijk kunnen worden gevormd in experimenten in stroomgoten en in computermodellen (je zet de kraan open…), maar meanderende rivieren niet, wat aangeeft dat die theorie incompleet was. Wij zijn erin geslaagd om voor het eerst een meanderende rivier te laten ontstaan die doorlopend zijn bochten verplaatst. Zoals verwacht op grond van oudere theorieën bleek de aanwezigheid van klei op de oevers essentieel voor meanderen, maar niet voldoende. De verrassende factor was dat we de instroom van de rivier in de zandbak of in een model moeten laten wiebelen om dynamiek te houden een doorlopende verstoring. Men dacht altijd dat kleine verstoringen die altijd aanwezig zijn in het systeem zelf groot genoeg zouden zijn maar dat leidde niet tot meanderen. Onze methode kan nu worden gebruikt voor verder onderzoek maar ook voor vele toepassingen, zoals bij het herstellen van natuur in beekdalen.

Delta’s in droge meren op Mars worden al een decennium herkend op gedetailleerde beelden, maar de interpretatie loopt sterk uiteen. Sommige planetologen beweren dat dergelijke delta’s laten zien er miljoenen jaren lang water stroomde, wat voldoende is voor het ontstaan van leven. De twee problemen bij de interpretatie van landvormen op Mars waren dat we met de delta’s op Aarde in het achterhoofd bevooroordeeld kunnen zijn, en dat de Martiaanse delta’s geen andere vormen hebben dan die op Aarde. Daarnaast waren de verschillende delta’s tientallen miljoenen tot 4 miljard jaar geleden actief, maar gelukkig is er sindsdien niet veel gebeurd op Mars zodat ze goed bewaard zijn gebleven en nog steeds zichtbaar zijn (vergelijk Google Earth, Mars en Moon). Wij hebben in de stroomgoot en met een nieuw model laten zien dat delta’s zich bliksemsnel—in jaren— kunnen vormen op Mars, en dat alleen dit de vorm van de delta’s verklaart. Langzamere en langduriger stroming zouden andere vormen maken en die zien we niet op Mars. Dat wijst op een koud en droog klimaat, waar vulkanisme of meteorietinslagen alleen plaatselijk het bodemsch londen smelten om dalen uit te slijten en delta’s te vormen. De experimenten waren super simpel (graaf een krater en zet de kraan open) maar omdat dit onderzoek over Mars gaat was het wel interessant voor Nature.

Online filmpjes met overzicht van deze onderzoeksprogramma’s:
- http://fastfacts.nl/content/maarten-kleinhans-meanderende-modder

Referenties
- van de Lageweg, W.M. van Dijk, and M.G. Kleinhans (2013). Channel belt architecture formed by a meandering river. Sedimentology, find through doi
1.1.2. – Introductie in het wetenschapsgebied

De eerste dag krijgen de kinderen eerst een introductie door een wetenschapper van de universiteit. De introductie gaat over rivieren en delta’s om is bedoeld om het onderwerp af te bakenen. De leerlingen leren het verschil tussen een meanderende rivier en een vlechtende rivier door voorbeelden van bestaande rivieren in de buurt en in de rest van de wereld. Ze leren hierdoor benoemen wat ze zien en ze worden uitgedaagd om zelf na te denken en vragen te stellen over rivieren en delta’s. Er wordt bijvoorbeeld een hoogtekaart van de omgeving getoond, waar ook de Leuvenumse beek op te zien is die zich in hun directe omgeving bevindt. Door vragen te stellen als “waarom ligt die beek daar op die hoogte?” worden ze zich bewust van hoe de beek ontstaat. Bij een ander voorbeeld zien ze een delta met en zonder vegetatie en mogen ze nadenken over wat het verschil is en waarom dat er is. Ook krijgen ze voorbeelden te zien van onderzoeken in een stroomgoot op de universiteit, bijvoorbeeld van een onderzoek waarbij delta’s gevormd worden met verschillende soorten zand. Hierna werd weer aan de kinderen gevraagd welke verschillen te zien zijn. Door deze verschillende voorbeelden worden variabelen zoals helling, soort sediment en wel of geen vegetatie geïntroduceerd, en leren ze dat een belangrijk onderdeel van wetenschappelijk onderzoek bestaat uit steeds maar één variabele veranderen. Er wordt ook al een inleiding gegeven over de stroomgoot (zandbak) die de kinderen zelf gaan bouwen om onderzoek in de doen en het programma wordt kort verteld. Zo weten de kinderen dat het de bedoeling is dat ze zelf een onderzoek mogen uitvoeren en dat ze daarna er een presentatie over gaan geven.

Na deze introductie gaan de kinderen naar buiten met een gieter om zelf te zien hoe water een zandig heuveltje afstroomt en geulen en zandbanken maakt. Ze mogen proberen uit te leggen wat ze zien en hoe ze denken dat dat komt. Zo leren ze niet alleen dat water van hoog naar laag stroomt, maar ook wat de invloed is van een steile of minder steile helling en wat er gebeurd als er steentjes in de weg liggen. Op deze manier maken ze kennis met het gedrag van water en worden hun verwondering over hun directe leefomgeving gestimuleerd en gekoppeld aan vergelijkbare verschijnselen in de rest van de wereld.

Op de tweede dag krijgen de kinderen een computerpracticum waarin ze op zoek gaan naar rivieren op Google Earth. Eerst leren ze het programma kennen en mogen ze hun eigen huis en school opzoeken. Daarna krijgen ze verschillende vragen over bijvoorbeeld de Rijn en de IJssel, maar ook over de Mississippi, een rivier die voor de kinderen minder bekend is. Ze leren hoe bepaalde vormen in het landschap veroorzaakt worden door de rivier en ze mogen nadenken over het verplaatsen van rivierbochten, de stromingsrichting en hoe je een delta kunt herkennen. Met Google Earth kunnen ze zelfs Mars bekijken en daar dezelfde vormen
1.1.3. – Empirische cyclus

Een van de belangrijkste doelen van het rivieren project is om te leren onderzoeken met behulp van de empirische cyclus, die wetenschappers zelf ook volgen en waarover ze publiceren. Een vereenvoudigde vorm van de empirische cyclus (stappenplan van onderzoekend leren – Fig. 1) wordt klassikaal besproken. Vervolgens gaan de kinderen de cyclus zelf doorlopen aan de hand van het bakken van een pannenkoek (zie filmpje Wetenschapsknooppunt Utrecht). Ze worden eerst gevraagd om een onderzoeksvraag op te stellen die te maken heeft met het bakken van een pannenkoek. Hierbij wordt door de leraar gestuurd tot er een vraag is gevormd waarbij maar één aspect varieert en die dus goed te onderzoeken is door twee pannenkoeken te bakken (één blanco of controle en één waarbij de variabele wordt gewijzigd). Uiteindelijk wordt er onderzocht wat het nut is van een ei in het pannenkoekenbeslag. De kinderen moeten eerst vertellen wat ze denken dat er gaat gebeuren en hoe ze het gaan onderzoeken. De hypothese van de kinderen uit het filmpje is dat een ei er voor zorgt dat de pannenkoek aan elkaar blijft plakken en ze gaan dit onderzoeken door een pannenkoek te bakken met een ei (controleproef) en een pannenkoek waarbij geen ei (variabele) is toegevoegd aan het beslag. Na het bakken komen ze erachter dat hun hypothese niet klopt en moeten ze een nieuwe vraag bedenken, bijvoorbeeld of de melk zorgt voor de binding in een pannenkoek. Dit voorbeeld laat zien dat een onderzoek waar kinderen echt wat van leren heel kleinschalig en toegankelijk kan worden opgezet, maar ook als basis kan dienen voor een groter project zoals dat met de rivieren. De kinderen zijn aan het leren hoe wetenschappers met behulp van de empirische cyclus hun toegang geven tot het wetenschappelijk onderzoek. In dit experiment, zodat de kinderen de stappen van de empirische cyclus blijven volgen in hun eigen onderzoek.

1.1.4. – Stroomgoot ontwerpen

Nadat de kinderen een introductie hebben gehad over rivieren en de empirische cyclus gaan ze zelf de stroomgoot ontwerpen waarin ze hun eigen onderzoek gaan uitvoeren (Fig. 2a en 2b). Dit gebeurt al de eerste dag, zodat hun enthousiasme vastgehouden wordt nadat ze verschillende voorbeelden van rivieren over de hele wereld gezien hebben. Hiervoor worden ze in drie kleine groepjes ingedeeld, waarbij iedere groep een eigen taak krijgt. Eén groep gaat nadenken over de afmetingen van de bak, een andere groep over de waterkringloop en een groep over hoe ze het lokaal schoon en droog houden. Bij deze opdrachten wordt door de begeleiders duidelijk benoemd wat de opdracht is en aan welke voorwaarden het moet voldoen. De kinderen vinden het bijvoorbeeld lastig om uit het niets een bak te gaan ontwerpen en daarom wordt van te voren als voorwaarde gesteld dat de bak zo in het lokaal moet passen dat de bak goed gebruikt kan worden maar niet in de weg staat. Om een idee te krijgen over de afmetingen kijken ze naar de grootte van tafels en hoeveel ruimte die innemen. Bij het groepje dat de waterkringloop gaat ontwerpen worden vragen gesteld als: wat gebeurd er als je de kraan open zet? Hoe kan je een pomp gebruiken? Waar moet er water de bak in stromen? Het is hierbij bijvoorbeeld niet belangrijk dat de kinderen er achter komen hoe een pomp precies werkt, maar dat ze een waterkringloop ontwerpen die gesloten is. Ze leren hierdoor ideeën naast elkaar leggen en af te wegen wat de beste oplossing is. Ook moeten ze rekenen, want bij de uiteindelijke ontwerpen moeten ook maten geschreven worden. Een voorbeeld hiervan is dat ze moeten berekenen hoeveel water er door de stroomgoot kan stromen en hoe groot de bak dan moet zijn om het water in op te vangen aan het eind van de goot. De kinderen krijgen vragen over hun ideeën en ze moeten steeds uitleggen waarom ze iets bedacht hebben. Aan het einde van de les moeten ze hun ontwerp ook aan de andere groepjes uitleggen. Met behulp van deze ontwerpen wordt door de begeleiders een boodschappenlijst opgesteld en worden de benodigdheden gekocht.

1.1.5. – Stroomgoot bouwen

De kinderen mogen onder begeleiding (van een ouder, promovendus en student) de bak gaan bouwen. Ze worden weer in groepen verdeeld waarbij ze aan de slag gaan met dezelfde taken als bij het ontwerpen. Aangezien het hoofddoel van het project is om te leren onderzoeken is het

Fig.1: Stappenplan van onderzoekend leren (Naar: Wetenschapsknooppunt Radboud Universiteit Nijmegen)

Fig.2a: Schematisch zijaanzicht van de stroomgootopstelling: bak (bruin) met zand (geel), water (blauw), waterkringloop (blauwe pijlen) via de pomp (rood) en de opvangbak (bruin, rechtsonder)
bouwen van de stroomgoot geen hoofddoel, maar hierdoor krijgen de kinderen wel het gevoel dat ze het zelf gemaakt hebben en maken ze ook kennis met het ontwerpproces. De kinderen worden ook nu uitgedaagd om goed te blijven nadenken over waarom ze dingen op een bepaalde manier doen, ook al wordt het echte bouwen vooral door de begeleiders gedaan. De leerlingen mogen bijvoorbeeld maten uiturenken en planken daarna op maat zagen, nadenken over de hoeveelheid schroeven die nodig zijn en testen of de waterkringloop werkt. Bij het uiturenken van de lengte van de planken moeten ze bijvoorbeeld rekening houden met overlappende randen en daarbij de dikte van de balk meenemen. Tijdens het bouwen lopen de kinderen tegen verschillende problemen aan, bijvoorbeeld dat de pomp niet werkt als deze voor de eerste keer wordt aangezet en dat de bak lekt als er water doorheen stroomt. Ze mogen zelf bedenken hoe dat komt, hoe het opgelost kan worden en of hun ontwerp aangepast moet worden. Ook deze vorm van (her)ontwerpen via ‘trouble shooting’ komt in de ontwerppraktijk veel voor. In het geval van de niet werkende pomp ontdekken de kinderen dat er lucht in de pomp zit of dat de slang geknipt is. Een lek in de bak wordt uiteindelijk dichtgeklemd.

Fig. 3: Formulier voor opzet van het eigen onderzoek

Fig. 2b: Foto van stroomgootopstelling (vooraanzicht). Kleuren van de pijlen corresponderen met kleuren in

Fig. 2b: bak (foto wit/schema bruin) met zand (geel), water (blauw), waterkringloop (blauwe pijlen) via de pomp (rood) en de opvangbak (zwart/bruin, rechtsonder)

1.1.6. – Bedenken van eigen onderzoeksvragen

Voor hun eigen onderzoek gaan de kinderen in groepjes eerst een onderzoeksvraag opstellen met één variabele, zodat de vraag onderzocht kan worden door twee toestanden met elkaar te vergelijken, net zoals bij het pannenkoek bakken. Er wordt eerst nog een keer klassikaal gepraat over de empirische cyclus. De wetenschapper herinnert de kinderen aan het pannenkoeken bakken, zodat ze het goed in hun hoofd hebben. De kinderen hebben bij het opstellen van hun eigen onderzoeksvragen ook een begeleider nodig die hun oorspronkelijke vragen uitpelt en stuurt naar een goede onderzoeksvraag. Veel kinderen verzinnen namelijk eerst een vraag als: ‘Hoe snel stroomt de rivier?’, ‘Hoe ontstaat een vlechtende rivier?’ of ‘Hoe lang duurt het voordat er een meer van 20 centimeter breed en 5 centimeter diep is gevormd onder een waterval?’ Dit soort vragen leveren geen nuttige experimenten op, omdat er niet naar één verschil gekeken wordt en de waarnemingen dus moeilijk te interpreteren en te veralgemeniseren zijn. Het voorbeeld van de waterval leverde een hypothese op met een schatting van 3,5 minuut. Door een begeleider werd gevraagd wat het nut was van hun onderzoek en wat het resultaat hen zou vertellen. Er wordt weer verwezen naar de onderzoeksvraag bij het pannenkoeken bakken. De kinderen werden zo gestuurd naar een onderzoek over een waterval met een relatief hoog debiet (hoewelheid doorstromend water per tijdseenheid) en een waterval met een lager debiet, zodat gekeken kon worden naar het verschil in de grootte van het gevormde meer. De kinderen kwamen er daarna achter dat ze niet wisten of het meer wel 20 centimeter breed zou worden, dus veranderden ze de te meten grootheid van afmeting in tijd. De uiteindelijke vraag werd toen: ‘wat is het verschil in afmetingen van een meer dat gevormd wordt onder een waterval met veel water en een waterval met weinig water na 4 minuten?’ Enkele andere voorbeelden van onderzoeksvragen die de kinderen hebben onderzocht zijn:

- Wat is het verschil in deltavorming in een diepe of in een ondiepe zee?
- Wat is het verschil in het deltaprofiel bij de eerste dijkdoorbraak en daaroverheen een tweede?
- Waar stroomt het water sneller: in een brede of in een smalle geul?
- Wat is het effect van plantengroei op de stroming van het water, sneller of langzamer?

Als de kinderen een goede vraag hebben bedacht, krijgen ze een blad waarop ze elke stap van de empirische cyclus kunnen noteren. Ze mogen gaan nadenken over hoe ze hun vraag gaan onderzoeken, zodat ze goed voorbereid aan hun experiment kunnen beginnen.
11.7. - Experimenten uitvoeren

Voordat de kinderen gaan beginnen met het uitvoeren van hun eigen onderzoek moeten ze eerst leren hoe ze kunnen meten aan hun experimenten en hoe ze de resultaten kunnen beschrijven. Ze krijgen de opdracht om naar een afbeelding van een rivier te kijken en het na te tekenen, waardoor ze leren om goed na te denken over wat ze zien en hoe ze dat vast kunnen leggen in een tekening. Hieruit blijkt dat elk kind het plaatje van de rivier op een andere manier interpreteert en het dus ook op een andere manier natekent, wat ze aan elkaar uit mogen leggen. Sommige kinderen tekenen namelijk vooral de zandbanken en de oevers van de rivier, terwijl anderen juist het water natekent.

Er wordt ook eerst samen met de leraar / wetenschapper een experiment uitgevoerd, waarbij de kinderen leren hoe en waarom ze bepaalde dingen kunnen meten, zoals de stroomkracht en de hoeveelheid water die door de bak stroomt. Ook ontdekken ze weer dat de bak een helling moet hebben om het water te laten stromen en dat ze zand moeten blijven toevoegen aan de bovenkant, zodat er geen zand verdwijnt.

De kinderen mogen hierna om de beurt hun eigen experimenten uitvoeren, terwijl de rest van de klas hun presentatie werkt. Ze krijgen allemaal een onderzoekschrift waarin ze kunnen opschrijven wat ze meten en waarin ze tekeningen op schaal maken van de stroomgoot. Een onderzoeksgroep maakt zelf de experimentopstelling en haalt daarna de rest van de klas erbij om mee te kijken als het experiment echt wordt uitgevoerd (zie kader met vragen, observeren, redeneren met kinderen). Ze vertellen wat hun onderzoeksvraag en hypothesen zijn en laten de andere kinderen helpen met meten. Dit gebeurt onder de leiding van een aardwetenschapper die de belangrijkste fenomenen benoemt en aanwijst die te zien zijn, en de kinderen laat meedenken toevoegen aan de bovenkant, zodat er geen zand verdwijnt.

De kinderen laten meedenken en zo weten ze dat ze het water moeten laten stromen en dat ze zand moeten blijven toevoegen aan de bovenkant, zodat er geen zand verdwijnt. De kinderen mogen hierna om de beurt hun eigen experimenten uitvoeren, terwijl de rest van de klas hun presentatie werkt. Ze krijgen allemaal een onderzoekschrift waarin ze kunnen opschrijven wat ze meten en waarin ze tekeningen op schaal maken van de stroomgoot. Een onderzoeksgroep maakt zelf de experimentopstelling en haalt daarna de rest van de klas erbij om mee te kijken als het experiment echt wordt uitgevoerd (zie kader met vragen, observeren, redeneren met kinderen). Zie kader met vragen, observeren, redeneren met kinderen.

In dit kader worden enkele voorbeelden gegeven van observaties en vragen van kinderen en de reacties van de leraar / wetenschapper om kinderen naar een oplossing van het probleem te helpen. Juist het overzicht over het vakgebied in brede zin is hierbij nodig, zonder dat de wetenschapper zelf antwoorden geeft.

Voorbeelden van vraaggestuurd leren en andere manieren van interactie tussen kinderen en leraren / wetenschappers rond de stroomgoot zijn ook te vinden op Youtube: zoeken naar “’ermeloklokbeker” en “klokbeker rivieren”.

Vragen, observeren en redeneren met kinderen

In dit kader worden enkele voorbeelden gegeven van observaties en vragen van kinderen en de reacties van de leraar / wetenschapper om kinderen naar een oplossing van het probleem te helpen. Juist het overzicht over het vakgebied in brede zin is hierbij nodig, zonder dat de wetenschapper zelf antwoorden geeft.

Voorbeelden van eigen vragen / observaties / redeneren door kinderen:

Vragen:
- Wat gebeurt er als je midden in een meer een eiland neerlegt?
- Waarom wordt die helling nu wat stijg en hoe zit dat?
- (over de circulatiepomp) hoe kan dat nou, stroom (elektriciteit) in water?

Observaties:
- Kijk wat er gebeurt! Hoe mooi dat zand beweegt.
- Kijk het zakt…. het gaat heel snel…. het is heel groot…

Redeneren:
- (over het maken van een filmpje op basis van foto’s) Leraar: dan moet je dus 5 foto’s maken. Reactie kind: nee, foto’s 4 per minuut, elke 15 seconden – rekenvaardigheid gerelateerd aan het maken van een filmpje op basis van foto’s.

Interacties:
In het algemeen leiden korte bondige (gesloten ja/nee) vragen het snelst tot een antwoord of handeling, maar zetten minder aan tot denken. Open, meer complexe, vragen vereisen langer wachten op antwoord (en ondersteuning, bijvoorbeeld door andere kinderen te vragen of een hint te geven), maar leiden wel tot nadenken en nieuwe vragen van kinderen.

Korte bondige (ja/nee) vragen die handelen stimuleren:
- Kan water ook onder een dijk doorstromen? Hoe kun je dat testen?
- Kinderen hun eigen oplossing laten proberen bij een vraag over werking van een pomp: Kijk maar, knip eens [in de slang] als hij boven water is (werkt niet), en als hij onderwater is (werkt wel).

Open vragen (niet complex)
- Zie je dit (wijzend op een helling), wat gebeurt er?
- Anticiperen op wat gaat komen (vlak voor een dijkdoorbraak): let nu goed op wat er gaat gebeuren (kijk naar de kleuren). Wat heb je gezien?
- Situatie waarbij kind zegt: “er gebeurt niets” (met zijn steen in het water) wetenschapper: “oh nee, ik voel iets, wat zie je hier gebeuren met het zand”.

Open vragen (te complex)
- Vragen met een te lange inleiding en veel variabelen tegelijk (bijv. waterhoogte, dijkbreedte, hoe sterk de dijk is)

Voorbeelden van testvragen
(gericht op reproductie, bijvoorbeeld definitievragen over vakspecifiche termen. Uitleg over de termen en stimuleren van gebruik kan wel):
- Hoe noemen we dat (als een dijk van uit elkaar blijft schuiven)?
- Waarom heet het nu een vlechtende rivier?

Aanmoedigende opmerkingen / vragen
- Belonen: dat is een hele goede vraag!
- Zullen we het samen bedenken, wat denk jij?
- Bij andere kinderen vragen: hoe denk jij dat het werkt?
- Dus jij denkt dat de dijk doorweekt raakt met water en dan doorbreekt, klopt dat?

1.1.8. – Presenteren

Gedurende het ontwerpen van de bak en de eigen onderzoeken moeten de kinderen steeds vertellen wat ze gedaan hebben en waarom, zodat het duidelijk wordt wat ze hebben geleerd. Dit gebeurt tussendoor door vragen van de begeleider en door een korte samenvatting aan het eind van elke les, waarbij de begeleider de belangrijkste punten herhaalt. Op zo’n moment aan het eind van de dag moeten de kinderen bijvoorbeeld hun ontwerp van de stroomgoot presenteren aan de rest van de klas. Ook voordat ze hun eigen onderzoek gaan uitvoeren moeten ze uitleggen aan de hele klas wat hun onderzoeksvraag is, wat ze verwachten dat er gaat gebeuren en hoe ze dat gaan meten. Hiermee wordt geofend in welke volgorde verschillende stappen doorlopen moeten worden om een probleem op te lossen. Door de eigen uitleg en gesprekken over het onderzoek wordt het duidelijk voor de kinderen wat ze moeten onthouden en blijft het beter hangen.

Aan het eind van het rivierenproject moet elk groepje hun eigen onderzoek presenteren aan hun ouders door middel van een PowerPoint (groep 7 en 8) of een poster (groep 4, 5 en 6). Er wordt alleen aandacht besteed aan het eigen onderzoek en niet op het ontwerpen van de bak. Bij het maken van de presentaties wordt weer aandacht besteed aan de empirische cyclus. De kinderen moeten op de posters elk onderdeel van de empirische cyclus beschrijven op een apart gekleurd blaadje (Figuur 4) en bij de PowerPoint moet elke stap op een aparte dia. Op deze manier wordt er onderscheid gemaakt tussen de verschillende stappen.

1.2 Handleiding voor een bezoek aan de basisschoolklas

Er zijn een groot aantal overeenkomsten, maar ook verschillen te herkennen tussen wat wetenschappers (onderzoekers en technologen) doen en wat kinderen doen als ze onderzoekend en ontwerpend leren. De belangrijkste principes van onderzoekend en ontwerpend leren zijn hier samengevat (Tabel 1). De tabel met onderstaande toelichting is bedoeld als conceptueel hulpmiddel om (eigen) wetenschappelijk onderzoek toegankelijk te maken voor een bezoek aan de basisschool. Een uitgebreidere uitleg en verantwoording van de kenmerken en voorwaarden van onderzoekend en ontwerpend leren is te vinden in hoofdstuk 2. Een meer praktische inspiratie voor ideeën van wetenschapsbeoefening met kinderen is te vinden in par. 1.3, met verwijzingen naar voorbeelden van werkwormen en lessuggesties.

Fig.4 poster met enkele stappen uit de empirische cyclus

Voorbeeld van richtinggevende (sturende) vragen aan kinderen door wetenschappers.

1.1.8. – Presenteren

Gedurende het ontwerpen van de bak en de eigen onderzoeken moeten de kinderen steeds vertellen wat ze gedaan hebben en waarom, zodat het duidelijk wordt wat ze hebben geleerd. Dit gebeurt tussendoor door vragen van de begeleider en door een korte samenvatting aan het eind van elke les, waarbij de begeleider de belangrijkste punten herhaalt. Op zo’n moment aan het eind van de dag moeten de kinderen bijvoorbeeld hun ontwerp van de stroomgoot presenteren aan de rest van de klas. Ook voordat ze hun eigen onderzoek gaan uitvoeren moeten ze uitleggen aan de hele klas wat hun onderzoeksvraag is, wat ze verwachten dat er gaat gebeuren en hoe ze dat gaan meten. Hiermee wordt geofend in welke volgorde verschillende stappen doorlopen moeten worden om een probleem op te lossen. Door de eigen uitleg en gesprekken over het onderzoek wordt het duidelijk voor de kinderen wat ze moeten onthouden en blijft het beter hangen.

Aan het eind van het rivierenproject moet elk groepje hun eigen onderzoek presenteren aan hun ouders door middel van een PowerPoint (groep 7 en 8) of een poster (groep 4, 5 en 6). Er wordt alleen aandacht besteed aan het eigen onderzoek en niet op het ontwerpen van de bak. Bij het maken van de presentaties wordt weer aandacht besteed aan de empirische cyclus. De kinderen moeten op de posters elk onderdeel van de empirische cyclus beschrijven op een apart gekleurd blaadje (Figuur 4) en bij de PowerPoint moet elke stap op een aparte dia. Op deze manier wordt er onderscheid gemaakt tussen de verschillende stappen.
1.2.1. Kenmerken en voorwaarden van onderzoekend en ontwerpen leren

Als wetenschapper kun je op verschillende manieren bijdragen aan wetenschap en technologie voor kinderen, afhankelijk van het doel dat je daarmee wilt bereiken. De twee belangrijkste algemene doelen zijn:
1) kinderen te laten zien wat het beroep van een onderzoeker/wetenschapper inhoudt en
2) kinderen te laten ervaren hoe en waar een wetenschapper onderzoek naar doet en gefascineerd door is.
Juist die fascinatie en het enthousiasme zorgen ervoor dat wetenschappers een geweldig rolmodel kunnen zijn en de talenten van kinderen voor wetenschap en technologie veel effectiever en sterker kunnen stimuleren dan de leerkrachten in het onderwijs.

Tabel 1: kenmerken en voorwaarden van onderzoekend en ontwerpend leren

<table>
<thead>
<tr>
<th>Tabel 1: kenmerken en voorwaarden van onderzoekend en ontwerpend leren</th>
<th>paragraaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenmerken</td>
<td>2.2.2</td>
</tr>
<tr>
<td>Empirische cyclus</td>
<td>2.2.2</td>
</tr>
<tr>
<td>Vereenvoudigde cyclus: stappen overslaan vs. stappen meer expliciet behandelen</td>
<td>2.2.2</td>
</tr>
<tr>
<td>Type onderzoek en vragen</td>
<td>2.2.3</td>
</tr>
<tr>
<td>1. relevantie en functie van de vraag voor kinderen</td>
<td>2.2.3</td>
</tr>
<tr>
<td>2. afbakenen van de vraag (onder begeleiding)</td>
<td>2.2.3</td>
</tr>
<tr>
<td>3. literatuur – theorie – model – vraag – hypothese</td>
<td>2.2.3</td>
</tr>
<tr>
<td>Reductie van complexiteit in</td>
<td>2.2.4</td>
</tr>
<tr>
<td>1. inhoud (onderwerpen / contexten / concepten)</td>
<td>2.2.4</td>
</tr>
<tr>
<td>2. uitdrukkingsvaardigheden</td>
<td>2.2.4</td>
</tr>
</tbody>
</table>

Voorwaarden	2.2.5
Onderzoekend en ontwerpend leren als:	2.2.5
1. doel om kennis te verwerven over onderwerpen / concepten / thema’s in het W&T-domein	2.2.5
2. middel	2.2.5
a. om te integreren met andere domeinen (o.a. taal, rekenen) en vakover-	2.2.5
-stijgende (21ste-eeuwse) vaardigheden	2.2.5
b. voor omgang met diversiteit in de klas	2.2.5

Didactische voorwaarden voor goed onderwijs:	2.2.6
1. welk doel wil je bereiken en wat is de beginsituatie van de leerlingen?	2.2.6
a. Doelen m.b.t. inhoud, proces, vaardigheden	2.2.6
b. Wat is relevante informatie of sluit aan bij beleving van leerling (authentiek)?	2.2.6
c. Wat sluit aan bij voorkennis van de leerling?	2.2.6
2. activiteiten en werkvormen	2.2.6
a. onderzoekende opdrachten: stimuleren nieuwsgierigheid en kritische houding, zoeken naar een generaliserende oplossing	2.2.6
b. ontwerpende opdrachten: zijn probleemoplossend, innovatief, zoeken naar unieke oplossing	2.2.6
c. integreren onderzoeken en ontwerpen	2.2.6
d. afwisseling tussen denken en handelen	2.2.6
3. begeleiding en interactie	2.2.6
a. zelf gestuurd leren – eigen vragen van leerlingen	2.2.6
b. vraag gestuurd leren – vragen door leraren en begeleiders	2.2.6
c. motivatie: stimuleren van verwondering, nieuwigheid en aanmoedigen van denkprocessen	2.2.6
4. terugkoppeling en leeropbrengst	2.2.6
a. toetsing van het resultaat	2.2.6
b. reflectie op het geleerde	2.2.6

Organisatorische voorwaarden en dimensies:	2.2.7
Programma vormgeven op basis van verschillende dimensies om W&T in het basisonderwijs te plaatsen, dit betekent nadenken over:	2.2.7
1. middelen, materiaal en opdrachten: voorgeschreven – open met eigenaarschap bij leerlingen	2.2.7
2. financiële middelen: geen – volledige ondersteuning	2.2.7
3. locatie: klas – technieklokaal – omgeving	2.2.7
4. intensiteit: korte les – groot project	2.2.7
5. hoeveelheid W&T-onderwijs op school: veel – weinig	2.2.7
Kenmerken van onderzoekend en ontwerpend leren

Empirische cyclus

Wetenschappers maken bij het onderzoeken en ontwerpen gebruik van een stappenplan (respectievelijk onderzoeks- en ontwerpcyclus). De onderzoekscyclus heeft vooral als doel een probleem beter te begrijpen door het zoeken naar generaliserende verklaringen, terwijl de ontwerpcyclus een probleem oplost door iets nieuws te ontwerpen of te maken, met een unieke oplossing als resultaat. Hoewel er dus een duidelijk onderscheid is tussen beide cycli zijn er veel overeenkomsten te herkennen en wordt de leerkracht gestimuleerd tot leren over het volgebied en bevogen tot een zekere mate van autonomie bij een volgende les over het onderwerp.

Bij het nadenken over deze dimensies en het ontwerp van een programma is het essentieel om de voorbereiding en uitvoer ook de leerkracht te betrekken en ervoor te zorgen dat deze aanwezig is en meedoet. Op deze wijze staat de wetenschapper niet alleen voor de begeleiding, wordt de leerkracht gestimuleerd tot leren over het volgebied en bevogen tot een zekere mate van autonomie bij een volgende les over het onderwerp.

Fig. 5a: Stappenplan van Onderzoekend Leren in basisonderwijs (Wetenschapsknooppunt-RU – www.wkru.nl/boek)

Fig. 5b: Type vragen die door leraren / wetenschappers gesteld kunnen in verschillende stappen van de onderzoekscyclus. Naar Geveke, Steenbeek, van Geert (2011) Wetenschapsknooppunt Noord-Nederland en aangepast naar voorbeelden in het project Rivieren en Delta's.
Type onderzoek en vragen

1. Relevantie en functie van de vraag: een wetenschappelijk onderzoeker onderzoekt een vraag wanneer hij/zij ervan overtuigd is dat er nog geen antwoord bekend is en dat het beantwoorden van een vraag ook een zekere waarde heeft in wetenschappelijke of maatschappelijke zin (relevantie). Kinderen lijken vooraf enthousiast te worden om vragen te onderzoeken/beantwoorden die ze zelf bedacht hebben (en dus voor henzelf relevant zijn – zie kader ‘vragen, observeren en redeneren met kinderen’). In andere woorden: vinden ze het leuk (sluit het aan bij beleving) en kunnen ze er wat mee (heeft het betekenis)?

Met de functie van de vraag wordt aangeduid wat het doel van de vraag is, bijvoorbeeld beschrijven, vergelijken, verklaren of een probleem oplossen. Afgaande op de stroming van experimenten lijkt het erop dat vragen met een beschrijvende, vergelijkende, verklarende of ontwerpende functie zich goed lenen voor het basisonderwijs. Vragen met een definierende of evaluierende functie lijken minder geschikt.

2. Afbakenen van de vraag (onder begeleiding): de vragen die kinderen stellen zijn veelal niet (experimenteel) toetsbaar omdat de vragen zo complex zijn dat geen enkelvoudige hypothese geformuleerd kan worden. Dit vraagt om een inperking van de vraag, waarbij slechts één variabele tegelijk gewijzigd wordt en een eerlijke vergelijking met een controleproef mogelijk is. Het inperken kunnen kinderen echter (nog) niet goed zelf en wordt gedaan onder begeleiding van een leraar / wetenschapper die hierbij voorbij stelt en denkprocessen stimuleert (zie Fig. 5b voor voorbeeldvragen in verschillende fasen van de onderzoekscyclus). In algemene zin zijn de vragen van kinderen vaak explorerend geformuleerd (bijvoorbeeld hoe werkt dit…?, of hoe zit dat…?) en niet zozeer gericht op het toetsen van een verklarende hypothese. De wedervragen die de leraar / wetenschapper stelt moeten het denken, redeneren, waarnemen, handelen en preciseren aanmoedigen en niet gericht zijn op reproductie van wat kinderen weten of zouden moeten weten (testvragen). Ook moeten de vragen specifiek gerelateerd zijn aan een voor de kinderen toegankelijke context waarin de vragen onderzocht kunnen worden. Kinderen kunnen niet zomaar op excursie om een vlechtende rivier te bekijken, maar via Google Earth kunnen ze zich hier toch een beeld van vormen. Deze manier van vragen en wedervragen leidt ertoe dat kinderen (mede) bepalen hoe een hypothese enerzijds op ervaring en anderzijds op beschikbare literatuur en model voorbeelden leidt en dan vragen wat ze precies bedoelen met ‘dit’. Zo ontstaan de eerste werkdefinities (pre-definitie).

In een volgende stap kun je dan voorstellen doen om ‘dit’ een naam te geven en ‘dat’ iets te bepalen op welke manier onderzocht of ontwikkeld wordt en dat er meerdere goede vragen, werkwijzen en uitkomsten kunnen zijn. Dit is een situatie waar veel leraren en ook sommige wetenschappers in hun onderwijs niet aan gewend zijn, maar deze manier van werken is zeer geschikt om belangrijke academische en vakoverstijgende vaardigheden (‘21st-century skills’) te ontwikkelen. Daar moet je jong mee beginnen.

Reductie van complexiteit in

1. Inhoud (onderwerpen / contexten / concepten): kinderen hebben in beperkte mate zicht op de complexiteit van de wereld om hen heen. Het is daarom zinvol een voorbeeld te geven van hoe je als wetenschapper zelf de complexe werkelijkheid reduceert tot een onderzoekbare (model)voorstelling. In een stroming van experimenten is het gevonden van wat dat bezinksel, en dat bij zichzelf zichtete waarin veel leraren en ook sommige kinderen overtuigd zijn en dat bekend is. En waar in de werkelijkheid deze bezinksel bestaat uit zand, en kleiderijtjes van verschillende vorm en grootte kun je in het onderzoek je beperken tot één soort zand. Het gaat voor kinderen pas leven als ze zich een eigen leven iets kunnen voorstellen bij de hoofdbegrippen (zoals ‘stromen’, en ‘bezinksel’). De voorstellingen zullen ongetwijfeld minder ontwikkeld en wellicht ook minder juist zijn dan de beelden die wetenschappers er bij hebben, maar het zijn dit soort startpunten die zowel in wetenschap als in onderwijs het begin kunnen zijn van een ontwikkeling naar nieuwe en bruikbare concepten. Als wetenschapper moet je inschatten of de manier waarop kinderen conceptualiseren zo’n bruikbaar startpunten kan zijn. Als dat zo is moet je niet in de valkuil vallen om telkens te vertellen hoe het ‘echt’ is (volgens de laatste stand van de wetenschap).

2. Uitdrukkingvaardigheid: in tegenstelling tot academici zijn kinderen niet geöfend om observaties en verklaringen die ze hebben goed onder woorden te brengen. In plaats daarvan beperken kinderen zich vaak tot beschrijvingen met termen als ‘dit’ en ‘hier’. Je kunt kinderen dan vragen wat ze precies bedoelen met ‘dit’. Zo ontstaan de eerste werkdefinities (pre-concepten). In een volgende stap kun je dan voorstellen doen om ‘dit’ een naam te geven die gangbaar is, zoals ‘debit’ of ‘meanderen’. In onderwijsvragen kunnen zo onnodig dat leraren / wetenschappers hun taal eerst aanpassen aan het globale taal- en denkniveau van de leerling. Als je dat doet is het best mogelijk om leerlingen zover te krijgen dat ze op natuurlijke wijze wetenschappelijke samenhangen kunnen gebruiken en op die manier bij te dragen aan hun academische geletterdheid.

Voorwaarden voor onderzoekend en ontwerpend leren

Voordat je als wetenschapper een bezoek gaat brengen aan een klas zou je (in overleg met een leraar) na kunnen denken over een aantal elementen (voorwaarden m.b.t. onderzoekend en ontwerpend leren, didactische en organisatorische voorwaarden) om je bezoek mee vorm te geven. In algemene zin is vooral aandacht nodig voor het wetenschappelijk proces (de stappen en de vaardigheden die daarbij horen) in plaats van, zoals nu veel gebeurt, het eenzijdig belichten van wetenschappelijke resultaten. Het is de leerling die het onderzoek moet doen, en dat moet meer zijn dan het repliceren van activiteiten die door anderen (de wetenschapper) verzorgen zijn. Autonomie is hierbij het uitgangspunt: de leerling bepaalt zelf wat en het tempo
b. voor omgang met diversiteit in de klas: in elke basisschoolklas is er (soms grote) diversiteit in

Onderzoekend en ontwerpend leren kan dienen als doel om inhoudelijke kennis te verwerven

1. Onderzoekend en ontwerpend leren als:

 • terug te koppelen op dat wat ze geleerd hebben.
 • bevorderen en leerlingen inzicht te geven in de essentie van het wetenschappelijk proces en
 • waarop het feit een antwoord is, met mogelijke negatieve gevolgen voor hun motivatie.
 • uiteraard kan onderzoekend en ontwerpend leren (net als echte wetenschap) niet zonder

 Onderzoekend en ontwerpend leren kan dienen als doel om inhoudelijke kennis te verwerven
 over het W&T-domein en de wereld om ons heen. Echter, gezien de diversiteit en talrijkheid
 van onderwerpen is het ondoenlijk om alle onderwerpen aan bod te laten komen. Daarbij
 heerst in het basisonderwijs een cultuur waarbij instructie, gericht op reproductie (van feiten
 van spelling, van woordbetekenissen, van de tafels van vermenigvuldiging, etc.) en het
 geven van ‘het goede antwoord’ voorop staan. Een reëel gevaar van deze didactiek is dat
 kinderen feiten moeten leren zonder dat ze daarom gevraagd hebben of de vraag kennen
 waarop het feit een antwoord is, met mogelijke negatieve gevolgen voor hun motivatie.

 Uiteraard kan onderzoekend en ontwerpend leren (net als echte wetenschap) niet zonder
 inhoudelijke kennis en kinderen vinden het vaak ook leuk om kennis op te doen. Maar, meer
 nog dan voor kennisverwerving, zou je onderzoekend en ontwerpend leren zien als
 middel om kinderen te laten kennismaken met het proces van wetenschapsbeoefening.

2. middel
 a. om te integreren met andere domeinen (taal, rekenen) en vakoverstrijdende (21ste-eeuwse)
 vaardigheden: in tegenstelling tot wat veel leraren denken, komt wetenschap en technologie
 beter tot zijn recht wanneer het niet als geen vak apart vak, maar als een vakoverstrijdende
 benadering wordt gegeven, waarbij onder andere taal- en rekenvaardigheden essentieel
 zijn voor het oplossen van problemen. Ook worden met onderzoekend en ontwerpend
 leren ‘21ste-eeuwse’ vaardigheden ontwikkeld, zoals creativiteit, ondernemingszin, kritisch
 denken, (complex) problemen oplossen, communicatieve vaardigheden, samenwerken,
 zelfsturing, flexibiliteit en ICT-geletterdheid (Voogt en Roblin 2010).
 b. voor omgang met diversiteit in de klas: in elke basisschoolklas is er (soms grote) diversiteit in
 ontwikkeling, voorkennis, interesse en motivatie etc.. Opvallend genoeg lijkt de houding ten
 opzichte van wetenschap bij leerlingen heel overeenkomstig. Zo goed als alle kinderen zijn
 prima in staat om natuurlijke fenomenen waar te nemen (zon, sterren, water, lucht, vallende
 stenen, planten en dieren, etc.) en ook zijn ze intrinsiek nieuwsgierig. Als kinderen actief
 betrokken worden (bijv. door te doen; schrijven, presenteren, samen problemen oplossen etc.) kan elk kind in de klas deelnemen en is onderzoekend en ontwerpend leren een goede
 manier om met diversiteit om te gaan.

Didactische voorwaarden voor goed onderwijs in Wetenschap en Technologie:

Er zijn diverse lesmethoden en vele lessen met materialen beschreven voor onderwijs in
Wetenschap en Technologie (zie voor voorbeelden par. 1.3). Er zijn echter zo veel verschillende
onderwerpen dat ze onmogelijk allemaal in het curriculum en het concrete schoolwerkplan
opgenomen kunnen worden. Onderwerpen moeten dus ook en vooral een kapstokfunctie
kunnen hebben. Dit vraagt om een meer generaliserend (didactisch) model voor het ontwerp van
onderwijs op basis van een aantal sleutelkenmerken. Bij het samenstellen van W&T-onderwijs
zijn vier elementen van belang: 1) begin-context en doelen, 2) activiteiten / werkvormen, 3)
begeleiding en interactie, 4) bespreking van de leeropbrengsten. We richten ons hier vooral op
het ontwerp van het onderwijs op het niveau van de lesbijeenkomst, met nadruk op bepalen
van doelen voor leerling en de leraar / wetenschapper en het ontwerpen van activiteiten en
opdrachten. Voor een meer uitvoerige beschrijving van deze en andere elementen van onderwijs
ontwerpen verwijzen we naar hoofdstuk 2 en andere werken (o.a. Mercer en et al. 2004, van

1. doelen en begin-context: iedere wetenschapper die wel eens een lezing of presentatie
heeft gehouden denkt meestal vooraf na over het doel van de voordracht en de doelgroep
(voorkennis van het publiek). Deze elementen zijn ook belangrijk bij een bezoek aan de klas.
Doelen die je met een bezoek zou kunnen bereiken kunnen gaan over inhoud (bijv. leerlingen
kunnen uitleggen welke dam als eerste doorbreekt, een brede of een smalle), maar ook over
3. activiteiten en werkvormen: kinderen leren het meest effectief wanneer activiteiten en de vorm waarin de activiteiten worden aangeboden (werkvormen, zie par.1.3) zoveel mogelijk op elkaar aansluiten. Een activiteit die aansluit bij het doel: ‘kinderen kunnen uitleggen welke dam als eerste doorbreekt, een brede of een smalle’ kan bijvoorbeeld zijn: het bouwen van een tweetal dammen in een stroomgoot. Een werkvorm kan zijn dat de wetenschapper laat zien aan de kinderen hoe de dammen maakt (voordoen / instructie) of dat de kinderen zelf mogen bedenken hoe breed de dammen moeten worden en ze dan ook zelf maken (bedenken en uitproberen / testen). Zorg er bij de keuze van activiteiten en werkvormen voor dat er afwisseling is tussen opdrachten waarbij kinderen iets moeten doen (handelen) en waarbij ze moeten bepalen wat er moet gebeuren (denken). Ook bij deze keuze van opdrachten is afwisseling wenselijk. Bijvoorbeeld tussen onderzoekende opdrachten (zoeken naar een generaliserende verklaring, bijv. waarom een bepaalde dam eerder doorbreekt) en ontwerpende opdrachten (zoeken naar een unieke oplossing, bijv. om een lek in de stroomgootbak het best te dichten).

3. begeleiding en interactie: een groot deel van het leerproces vindt plaats in de interactie tussen begeleider en leerling. Daarom moet bij het ontwerp van de bijeenkomst nagedacht worden over het creëren van omstandigheden voor interactie (bijv. drempelverlaging door met kleine groepjes rondom de stroomgoot te staan en vragen te stellen, op dezelfde ooghoogte gaan zitten). Tijdens de les zal de leraar/wetenschapper moeten achterhalen over welke kennis een kind beschikt en vervolgens manieren bedenken om kinderen iets nieuws te leren (bijv. door vragen / ervaringen). Als kinderen vastlopen of iets niet begrijpen kan het helpen om de aandacht te richten op een verschijnsel waar ze misschien nog geen oog voor hadden, om hun inspanning te, waarderen, of hen aanmoedigen om er samen uit te komen (zie Fig. 5b). Op die manier blijven kinderen gemotiveerd, betrokken en nieuwsgierig om probleem zelf op te lossen. Er kan een grote neiging zijn om ‘te helpen’ door voor te zeggen en voor te doen, maar daarmee ontneem je de kinderen hun eigenaarschap. Ze zullen je dan steeds vaker vragen of het ‘goed’ is wat ze doen, in plaats van zelf te bepalen of ze zo al dan niet meer zicht krijgen op de beantwoording van hun eigen onderzoeks vraag.

4. leeropbrengst en terugkoppeling: een belangrijk onderdeel van het leerproces is het bespreken van datgene wat door de leerling geleerd is (leeropbrengst). Dit kan je zowel tijdens als na afloop van de bijeenkomst doen met alles wat ze geleerd (kunnen) hebben. Je kunt bijvoorbeeld vragen stellen of een opdracht doen om te kijken of concepten juist aangeleerd en begrepen zijn. Anderzijds kan er terugkoppeling (feedback) aan de leerling worden gegeven over het geleerde door kinderen te laten benoemen wat ze gedaan en begrepen hebben en wat niet. Wanneer en op welke wijze deze terugkoppeling aan de leerlingen wordt gegeven en/of geregistreerd wordt hangt onder andere af van de wijze waarop toetsing van W&T is opgenomen in het schoolbeleid (schoolwerkplan). Dit kan variëren van helemaal geen toetsing tot en met een leerlingvolgsysteem (bijv. met portfolio’s) waarin verschillende zaken nauwkeurig worden geregistreerd gedurende de gehele schoolperiode. De meeste basisscholen hebben over toetsing van W&T echter geen uitgewerkte visie en laten het aan de individuele leraar over welke vorm de feedback krijgt.

Organisatorische voorwaarden en dimensies:
Gelukkig staat, ondanks deze overladenheid, het belang van een gezamenlijke inzet voor een brede algemene kennisbasis van Nederland en het draagvlak voor de wetenschap niet ter discussie (Advies Verkenningencommissie W&T 2013). Het mooie van onderwijs in Wetenschap en Technologie is dat het uitgevoerd kan worden met behulp van vele activiteiten en middelen (zie par.1.3 voor inspiratie). Welke activiteit/werkvorm gekozen wordt is afhankelijk van organisatorische voorwaarden, zoals beschikbare middelen, locatie, tijd en (financiële / didactische) ondersteuning. Daarnaast moet rekening worden gehouden met de verschillende dimensies (o.a. hoeveelheid, intensiteit, mate van integratie met andere vakken) om het W&T-onderwijs op de basisscholen te plaatsen (zie tabel 1, en par 2.2.7). Bij het nadenken over deze dimensies en het ontwerp van een programma is het essentieel om in de voorbereiding en de uitvoer ook de leerkracht te betrekken en ervoor te zorgen dat deze aanwezig is en medeedoet. Op deze wijze staat de wetenschapper niet alleen voor de begeleiding en wordt de leerkracht gestimuleerd tot leren over het vakgebied en bewogen tot een zekere mate van autonomie bij een volgende les over het onderwerp.

In principe zijn voor onderzoekend en ontwerpend leren geen dure materialen, technieken of speciale ruimtes nodig. Goede faciliteiten zijn uiteraard behulpzaam, maar onderzoek kan prima beoefend worden met spullen in de keuken, of met een blokkendoos in de gymzaal, in het handvaardigheid lokaal, of gewoon in de klas. Wetenschappers zijn bij uitstek in staat om zich te verwonderen en bij alledaagse dingen vragen te stellen die op een onderzoekende en ontwerpende manier zijn op te lossen. Juist daarom kunnen ze hun enthousiasme en de werkwijze van de wetenschapper goed overdragen op kinderen.

1.3 Voorbeelden werkvormen en lessuggesties ter inspiratie

Bij een bezoek aan de klas kun je een keuze maken uit een grote hoeveelheid beschikbare activiteiten en werkvormen om kinderen hun talent voor Wetenschap en Technologie te laten ontdekken en te stimuleren. Er is echter nogal wat variatie in de mate waarin activiteiten/werkvormen bijdragen aan het verwerven van kennis (over onderwerpen in het W&T-domein) en integratie mogelijk maken met andere domeinen (taal, rekenen, aardrijkskunde, geschiedenis, etc.) en vakoverstijgende vaardigheden (aanpakken, kritisch denken, etc.). Om van een idee voor een onderwerp te komen naar een (serie) uitgewerkte les(es) die bruikbaar is (zijn) voor een basisschool klas zijn hier korte beschrijvingen gegeven van mogelijke werkvormen met verwijzingen naar (uitgewerkte) lessuggesties.

Werkvormen en vaardigheden:

De keuze voor een geschikte werkvorm hangt onder andere af van het type activiteit (lezing, practicum, ontwerp realiseren, etc.), beschikbare tijd, groep (leeftijd), beoogde doel en aan te leren vaardigheden. Een selectie van lessuggesties op basis van deze kenmerken kan onder andere worden gemaakt via:

- [Wetenschapsknooppunten](http://wetenschapentechnologie.slo.nl)
- [SLO](http://wetenschapentechnologie.slo.nl)

De lessuggesties hebben verschillend karakter waarbij verschillende vaardigheden aan bod komen. In tabel 2 worden overkoepelende vaardigheden beschreven, met daarbij activiteiten die in de praktijk veel als vaardigheid benoemd worden in het basisonderwijs.

Instructie: een leraar / wetenschapper laat iets zien over een onderwerp (bijvoorbeeld hoe rivieren stromen, of hoe planeten om de zon draaien). Dit is in essentie eenrichtingverkeer, waarbij de leraar vertelt en kinderen luisteren. Het draagt weinig bij aan het proces van wetenschapsbeoefening.

Leren over wetenschap: een wetenschapper vertelt iets over wetenschap, hoe het ontstaan is, beoefend wordt of waar hij/zij door gefascineerd is (zie bijv. Wetenschapsknooppunt RU). Hier gaat het om kennis opdoen over het beroep van wetenschapper door dingen te laten zien of kinderen te laten ervaren (bijvoorbeeld aan de hand van meegenomen voorwerpen), bijvoorbeeld in een [kinderlezing](http://wetenschapentechnologie.slo.nl) met bijbehorende proefjes.

Exploreren: combinatie tussen waarneming (perceptie: kijken, voelen, ruiken, etc.) en handelen. Belangrijk bij het exploreren is dat vraag en proces belangrijker zijn dan het antwoord. Exploreren kan gerelateerd zijn aan natuurlijke verschijnselen in de echte wereld, bijvoorbeeld in de natuur, de keuken of in een excursie naar een bedrijf of een ‘Science museum’ (zie verwijzing naar websites achterin dit boekje). Belangrijkste vraag hier is: hoe werkt dat?

Exploreren gerelateerd aan technologie kan gezien worden als een ‘black box’-openen. Hierbij gaat het om het ontdekken en uitproberen van door mensen gemaakte dingen (bijvoorbeeld met behulp van een handleiding, gereedschappen of andere technologie). Belangrijkste vraag hierbij is: hoe maak je dat?

1.3 Voorbeelden werkvormen en lessuggesties ter inspiratie

Bij een bezoek aan de klas kun je een keuze maken uit een grote hoeveelheid beschikbare activiteiten en werkvormen om kinderen hun talent voor Wetenschap en Technologie te laten ontdekken en te stimuleren. Er is echter nogal wat variatie in de mate waarin activiteiten/werkvormen bijdragen aan het verwerven van kennis (over onderwerpen in het W&T-domein) en integratie mogelijk maken met andere domeinen (taal, rekenen, aardrijkskunde, geschiedenis, etc.) en vakoverstijgende vaardigheden (aanpakken, kritisch denken, etc.). Om van een idee voor een onderwerp te komen naar een (serie) uitgewerkte les(es) die bruikbaar is (zijn) voor een basisschool klas zijn hier korte beschrijvingen gegeven van mogelijke werkvormen met verwijzingen naar (uitgewerkte) lessuggesties.

Werkvormen en vaardigheden:

De keuze voor een geschikte werkvorm hangt onder andere af van het type activiteit (lezing, practicum, ontwerp realiseren, etc.), beschikbare tijd, groep (leeftijd), beoogde doel en aan te leren vaardigheden. Een selectie van lessuggesties op basis van deze kenmerken kan onder andere worden gemaakt via:

- [Wetenschapsknooppunten](http://wetenschapentechnologie.slo.nl)
- [SLO](http://wetenschapentechnologie.slo.nl)

De lessuggesties hebben verschillend karakter waarbij verschillende vaardigheden aan bod komen. In tabel 2 worden overkoepelende vaardigheden beschreven, met daarbij activiteiten die in de praktijk veel als vaardigheid benoemd worden in het basisonderwijs.

Instructie: een leraar / wetenschapper laat iets zien over een onderwerp (bijvoorbeeld hoe rivieren stromen, of hoe planeten om de zon draaien). Dit is in essentie eenrichtingverkeer, waarbij de leraar vertelt en kinderen luisteren. Het draagt weinig bij aan het proces van wetenschapsbeoefening.

Leren over wetenschap: een wetenschapper vertelt iets over wetenschap, hoe het ontstaan is, beoefend wordt of waar hij/zij door gefascineerd is (zie bijv. Wetenschapsknooppunt RU). Hier gaat het om kennis opdoen over het beroep van wetenschapper door dingen te laten zien of kinderen te laten ervaren (bijvoorbeeld aan de hand van meegenomen voorwerpen), bijvoorbeeld in een [kinderlezing](http://wetenschapentechnologie.slo.nl) met bijbehorende proefjes.

Exploreren: combinatie tussen waarneming (perceptie: kijken, voelen, ruiken, etc.) en handelen. Belangrijk bij het exploreren is dat vraag en proces belangrijker zijn dan het antwoord. Exploreren kan gerelateerd zijn aan natuurlijke verschijnselen in de echte wereld, bijvoorbeeld in de natuur, de keuken of in een excursie naar een bedrijf of een ‘Science museum’ (zie verwijzing naar websites achterin dit boekje). Belangrijkste vraag hier is: hoe werkt dat?

Exploreren gerelateerd aan technologie kan gezien worden als een ‘black box’-openen. Hierbij gaat het om het ontdekken en uitproberen van door mensen gemaakte dingen (bijvoorbeeld met behulp van een handleiding, gereedschappen of andere technologie). Belangrijkste vraag hierbij is: hoe maak je dat?

<table>
<thead>
<tr>
<th>Tabel 2: vaardigheden</th>
<th>Wetenschap en Technologie</th>
<th>Vakspecific</th>
<th>Vakoverstijgend (21st century skills)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Onderzoeken</td>
<td>Ontwerpen</td>
<td>Taakontwikkeling</td>
</tr>
<tr>
<td></td>
<td>confronteren (verwonderen, afvragen)</td>
<td>confronteren (verwonderen, afvragen, definieren)</td>
<td>- woordenschat uitbreiden</td>
</tr>
<tr>
<td></td>
<td>a. verkennen (informatie verzamelen, bronnen raadplegen,)</td>
<td>a. verkennen (informatie verzamelen, bronnen raadplegen, uitproberen,)</td>
<td>- informatie verwerven</td>
</tr>
<tr>
<td></td>
<td>b. vragen formuleren (operationaliseren)</td>
<td>b. Programma van eisen opstellen</td>
<td>- discussiëren</td>
</tr>
<tr>
<td></td>
<td>experiment opzetten (bedenken, plannen)</td>
<td>ontwerpen (oplossingen bedenken, plannen)</td>
<td>- presenteren</td>
</tr>
<tr>
<td></td>
<td>experiment uitvoeren (doen, gegevens verzamelen)</td>
<td>ontwerp realiseren (maken)</td>
<td>- schrijven</td>
</tr>
<tr>
<td></td>
<td>conclureren (analyseren, verklaren, evalueren)</td>
<td>ontwerp testen (evalueren, en aanpassen)</td>
<td>- redeneren</td>
</tr>
<tr>
<td></td>
<td>communiceren (presenteren, discussiëren, verslag maken)</td>
<td>communiceren (presenteren, discussiëren, vergelijken)</td>
<td>- ...</td>
</tr>
<tr>
<td></td>
<td>verdiepen/verbreden (naar leefwereld, nieuwe informatie, nieuwe vragen)</td>
<td>verdiepen/verbreden (naar leefwereld, nieuwe informatie, nieuwe theorie)</td>
<td>- ...</td>
</tr>
</tbody>
</table>

Theorie en achtergrondinformatie voor het beoefenen van Wetenschap en Technologie in het basisonderwijs
De informatie in dit boekje is vooral bedoeld om wetenschappers aanknopingspunten te geven om (eigen) onderzoek en technologie te vertalen naar het basisonderwijs om op die manier kinderen op jonge leeftijd kennis te laten maken met actuele wetenschappelijke thema’s en het leren onderzoeken en ontwerpen. We hopen tevens dat wetenschappers hiermee worden uitgedaagd en ondersteund om hun onderzoek op toegankelijke wijze te presenteren zodat ze een bijdrage kunnen leveren aan de ontwikkeling van onderwijsproducten en lesvormen die op scholen worden ingezet.

De rol die wetenschappers hebben bij het stimuleren van Wetenschap en Technologie in de samenleving kan gezien worden als onderdeel van een groter geheel van projecten en activiteiten die recentelijk ingezet worden om talenten van kinderen in het basisonderwijs te helpen ontwikkelen. Hierbij kan worden gedacht aan: 1) nascholingsprogramma’s voor leraren; 2) visieontwikkeling op Wetenschap en Technologie voor schoolleiders; 3) onderzoeksprojecten naar begeleiding en ontwikkeling van onderzoeks- en ontwerpvraaglijkheden bij kinderen (zie ook: Een jaar in woord en beeld, KTWEBT 2012). Door deze gezamenlijke inspanningen worden talenten van kinderen voor wetenschap en technologie gestimuleerd en wordt ze tevens een methodiek aangeleerd die leerlingen op den duur in staat stelt om willekeurige problemen zelf te lossen en op die manier bij te dragen aan de ontwikkeling van onze technologische samenleving.

Behalve voor een bijdrage aan academisch onderwijs en onderzoeksleiderschap kunnen argumenten in dit hoofdstuk ook ingezet worden als middel om leerkrachten, ouders, individueel begeleiders en andere ondersteuners en opleiders in het basisonderwijs te overtuigen van het belang van Wetenschap en Technologie; voor het ontwikkelen van een kritische, vragende en onderzoekende houding (academisch burgerschap) en de brede kennisbasis van onze samenleving. Echter, als wetenschappers zich sterk willen (blijven) maken voor de kwaliteit van het basisonderwijs zouden ze daar wel meer mogelijkheden voor moeten gaan krijgen, bijvoorbeeld doordat universiteiten, KNAW / NWO / VSE (via Standard Evaluation Protocol – SEP) en het ministerie van OCW inspanningen op dit vlak moeten gaan zien als kennisvalorisatie en er enige tijd voor inruimen naast andere valorisatie-activiteiten en de kerntaken onderzoek en onderwijs. Aan het laatste wordt momenteel gewerkt, onder andere vanuit De Jonge Akademie en de KNAW.
2.1 Waarom onderwijs in wetenschap en technologie bij kinderen?

2.1.1 Belang van wetenschap en technologie in het basisonderwijs

Een vroege start met wetenschap en technologie onderwijs is van groot belang, zowel vanuit maatschappelijk oogpunt als voor de motivatie en ontwikkeling van kinderen. In de jaren ’60 van de vorige eeuw is (eerst in Amerika en Engeland en later ook in andere landen) een begin gemaakt met wetenschapsonderwijs op de basisschool vanuit de gedachte dat:

- wetenschap bijdraagt aan de ontwikkeling van inzichten waarmee we onze wereld begrijpen en kunnen veranderen
- problemen kunnen worden opgelost door het zoeken naar en selecteren van relevante informatie en oplossingen te baseren op (empirisch) bewijsmateriaal

In de loop der jaren heeft ander onderzoek daaraan toegevoegd dat:

- er een groot belang is van wetenschap en technologie bij de snelle verandering en ontwikkeling van de wereld om ons heen
- belangstelling voor wetenschap en technologie zich al op 6 of 7-jarige leeftijd ontwikkelt, mede gestimuleerd door ouders en leraren (Guichard, 2007)
- geslachtsverschillen in academische prestatie (vaak een punt van zorg in educatie op hogere niveaus) nog niet aanwezig zijn in het primair onderwijs (Haworth et al, 2008, Royal Society 2010)
- kinderen een positieve houding hebben ten opzichte van wetenschap, ongeacht het resultaat van hun prestatie (Royal Society 2010)

Een vroege start lijkt dus noodzakelijk, maar wat is vroeg? Recent onderzoek (Gopnik et al, 2012) laat zien dat de wijze waarop zeer jonge kinderen (2-3 jaar oud) leren en denken al overeenkomst vertoont met wetenschappelijk denken. Kinderen hebben verwachtingen, kunnen oorzakelijke verbanden leggen en gebruiken hun ervaringen en waarnemingen om gericht dingen uit te proberen. Het kan dus bijna niet vroeg genoeg!

2.1.2 – Oriëntatie op jezelf en de wereld

Er zijn in de wetenschap talloze ideeën, concepten en processen die bijdragen aan het begrip en inzicht van de wereld om ons heen. Deze inzichten zijn vaak abstracte voorstellingen die je in staat stellen om iets te begrijpen van observaties uit het dagelijks leven, bijvoorbeeld het trekken en duwen aan een voorwerp (een dam van zand in de stroomgoot) leert je iets over de relatie tussen de beweging van objecten en de krachten die erop werken. Wetenschap en technologie in het basisonderwijs draagt bij aan o.a. aan het ontwikkelen van dergelijke ‘kleine’ ideeën van een laag abstractieniveau. Het onderwijs kan echter ook bijdragen aan het ontwikkelen van ‘grote’ ideeën uit de natuurwetenschappen (samengevat in de bètacanon, van Calmhouth et al, 2008), waar ieder mens iets vanaf zou moeten weten. Een voorbeeld van zo’n groot idee zijn de waterwerken om ons land tegen overstroming te beschermen. Het stroomgoot-experiment in hoofdstuk 1.1 zou ook gebruikt kunnen worden om te koppelen aan de functie van de waterwerken. Dit vereist echter wel een bepaalde mate van theoretische kennis (bijv. over dijken, overstroomingskansen etc.) en ervaring met modelvorming die bij jonge kinderen (nog) niet aanwezig is en aangeleerd moet worden (zie par 2.2.3).

2.1.3 – Aansluiting bij kerndoelen van het basisonderwijs

Het basisonderwijs in wetenschap en technologie is vooral gericht op het stellen van vragen en vervolgens het zoeken naar manieren om tot antwoorden op die vragen te komen. De vragen die gesteld worden horen wat inhoud betreft tot het domein ‘Oriëntatie op jezelf en de wereld’ (een van de 7 domeinen in het primair onderwijs) In het document Kerndoelen primair onderwijs (Ministerie OCW) wordt dit domein als volgt beschreven:

‘In dit leergebied orienteren leerlingen zich op zichzelf, op hoe mensen met elkaar omgaan, hoe ze problemen oplossen en hoe ze zin en betekenis geven aan hun bestaan. Leerlingen orienteren zich op de natuurlijke omgeving en op verschijnselen die zich daarin voordoen. Leerlingen orienteren zich ook op de wereld, dichtbij, veraf, toen en nu en maken daarbij gebruik van cultureel erfgoed.’

Deze oriëntatie moet ertoe leiden dat de kinderen bij het verlaten van de basisschool een algemene houding hebben die gericht is op het analyseren en oplossen van problemen. Meer specifiek is deze houding ook uitgewerkt in de kerndoelen zelf:

Natuur en Techniek

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Doel</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>De leerlingen leren in de eigen omgeving veel voorkomende planten en dieren onderscheiden en benoemen en leren hoe ze functioneren in hun leefomgeving.</td>
</tr>
<tr>
<td>41</td>
<td>De leerlingen leren over de bouw van planten, dieren en mensen en over de vorm en functie van hun onderdelen.</td>
</tr>
<tr>
<td>42</td>
<td>De leerlingen leren onderzoek doen aan materialen en natuurkundige verschijnselen, zoals licht, geluid, elektriciteit, kracht, magnetisme en temperatuur.</td>
</tr>
<tr>
<td>43</td>
<td>De leerlingen leren hoe we de wereld met behulp van temperatuur, neerslag en wind. beschrijven.</td>
</tr>
<tr>
<td>44</td>
<td>De leerlingen leren bij producten uit hun eigen omgeving relaties te leggen tussen de werking, de vorm en het materiaalgebruik.</td>
</tr>
<tr>
<td>45</td>
<td>De leerlingen leren oplossingen voor technische problemen te ontwerpen, deze uit te voeren en te evalueren.</td>
</tr>
<tr>
<td>46</td>
<td>De leerlingen leren dat de positie van de aarde ten opzichte van de zon, seizoenen en dag en nacht veroorzaakt.</td>
</tr>
</tbody>
</table>

Bij het oriënterenop natuur gaat het dus om zelf, om dieren en planten in de natuur en verschillende aspecten van de natuurlijke omgeving. Bij de oriëntatie op de wereld gaat het om de vorming van een wereldbeeld in ruimte en tijd. Onderwijs is er vooral op gericht om leerlingen zicht te geven op betekenis en samenhang. Daarom wordt ook gezocht naar integratie met andere domeinen zoals taal (o.a. begrijpend lezen) en rekenen/wiskunde, getuige o.a. kerndoelen:
Hoewel er dus voldoende aanknopingspunten lijken te zijn voor wetenschap en technologie in het basisonderwijs, is er tot op heden relatief weinig aandacht en tijd voor (enkele goede voorbeelden daargelaten). Belangrijke redenen hiervoor zijn de grote prioriteit (ook vanuit de wetenschappen. Zoals hierboven wordt beschreven sluiten de vaardigheden en kennis in deze领域en van voor hen onbekende woorden. Onder ‘woordenschat’ vallen ook begrippen die het leerling mogelijk maken over taal te denken en te spreken.

2.1.4 – Stimuleren van onderzoekende houding

Jonge kinderen zijn enthousiast, stellen vragen, proberen dingen uit en zijn niet bang om fouten te maken (Royal Society 2010). Hoewel ze regelmatig proberen verklaringen te bedenken voor wat ze zien en beleven is hun gedrag vooral exploratief (verkennend) van aard. Kinderen worden uitgedaagd door vragen als: ‘hoe weet je dat…’ of hoe werkt dit…? Door te onderzoeken leren kinderen dat ze zelf in staat zijn om antwoorden te genereren op hun eigen vragen en worden ze gemotiveerd om verder te vragen en te zoeken (par. 2.2.6). Daarbij leren ze wat het belang is van relevante informatie (bewijsmateriaal) om hun verklaringen te ondersteunen. Uit het voorbeeld met de stroogoot (zie kader ‘vragen, observeren en redeneren met kinderen’), maar ook uit literatuur (voor overzicht zie Harlen en Lena 2011) blijkt dat kinderen in beperkte mate zicht hebben op de complexiteit van de wereld om hen heen. Het is dus vooral een uitdaging om hun onderzoekende houding te stimuleren en deze te ontwikkelen in samenhang (context) met gebeurtenissen in hun eigen beleveniswereld. Wetenschappers kunnen hieraan bijdragen door voorbeelden uit de eigen onderzoekspraktijk die een beeld te schetsen van de complexiteit van de wereld en tegelijkertijd orde te scheppen in deze complexiteit. Wetenschappers die enthousiast en gepassioneerd komen vertellen over hun werk kunnen juist vanwege hun autoriteit en ervaring een geloofwaardiger rolmodel zijn voor kinderen dan hun eigen leerkrachten.

2.1.5 – Maatschappelijke relevantie van wetenschap en technologie in het basisonderwijs

bruikbare’ leerlingen af te leveren. Het zal duidelijk zijn dat het voor wetenschappers in alle disciplines het een noodzaak is om hun onderzoek en vereiste vaardigheden toegankelijk te maken voor het basisonderwijs. Het gaat hier bijvoorbeeld om vaardigheden die bijdragen aan academisch burgerschap, zoals het vermogen om ons kritisch te verhouden tot autoriteiten (leraren, bestuurders, politici, etc.) en ons te kunnen verplaatsen in het perspectief van anderen en de rol van burgerrechten, empathie, wederkerigheid etc. te doorgronden. Een indringend pleidooi voor belang en het behoud van kunst, literatuur, talen, muziek, filosofie in het (basis) onderwijs is recent beschreven in ‘Niet voor de Winst’ (Nussbaum 2011). Hoewel in dit boekje dus vooral aanknopingspunten worden gegeven voor de belangen en toepassing van natuur- en technische wetenschappen in het basisonderwijs, doen we hier een appèl op wetenschappers in de meest brede zin van het woord om te kijken op welke wijze kennis en ideeën uit de eigen discipline kunnen bijdragen aan het ontwikkelen van talenten en stimuleren van (meta)cognitieve en sociale vaardigheden van kinderen.

2.2 Wetenschappelijk onderzoek vs. onderzoekend en ontwerpend leren bij kinderen

In deze paragraaf gaan we in op de overeenkomsten en verschillen tussen wat wetenschappers (onderzoekers en technologen) doen en wat kinderen doen als ze onderzoekend en ontwerpend leren. We zullen dit doen door te kijken naar theorie- en modelvorming over wetenschap, naar overeenkomsten en verschillen in de onderzoeks- en ontwerpcyclus en naar principes van goed onderwijs in wetenschap en technologie.

2.2.1 - Wetenschappelijke modellen en theorieën

Er zijn verschillende modellen voor hoe wetenschap werkt (zie voor een overzicht Chalmers 1999). Een door wetenschappers veel aangehaald model is bijvoorbeeld het hypothetico-deductieve model van Hempel (Hempel en Oppenheim 1948). Dit model stelt dat een verklaring van een fenomeen wordt gedeucteerd uit de ‘initiële’ condities en de algemene wetten die hierop van toepassing zijn. Zo kan de stroomsnelheid in een rivier worden verklaard uit de diepte en bodemruwheid van die rivier en de wet van Chézy welke algemeen geldig is (onder bepaalde voorwaarden). Het model van Hempel vereenvoudigt de praktijk van wetenschap op vele manieren. Filosofen hebben veel discussie gevoerd over het model, maar voorop staat dat het beschreven patroon vaak herkenbaar is in wetenschappelijk werk en dat de afgeleide empirische cyclus de basis is van de opbouw van veel wetenschappelijke artikelen (oriëntatie, werkwijze, data, conclusies).

Deductie is echter niet de enige vorm van logica die wetenschappers dagelijks gebruiken, ook inductie en abductie komen vaak voor. Deze vormen zijn perfect complementair maar toch is de laatste, abductie, nauwelijs bekend. Figuur 6 laat de relaties tussen deductie, inductie en abductie zien. Kort gezegd, komt het erop neer dat bij elke verklaring een combinatie wordt gebruikt van initiële condities (hoe het was, oorzaak), finale condities (hoe het nu is, gevolg) en wetten of (statistische) generalisaties. Een combinatie van twee resulteert in de derde. Abductie is ook bekend als ‘afleiding naar de beste verklaring’ en hypothesevorming en wordt zeer frequent gebruikt in de aardwetenschappen, rechtspraak, astronomie en andere disciplines (Kleinhans et al. 2010).

![Figuur 6: Relatie tussen deductie, inductie en abductie. Verschillende termen gebruikt in de literatuur zijn weergegeven.](image-url) Voor een toelichting zie Kleinhans et al. 2010.

2.2.2 – Empirische cyclus

Wetenschap en technologie worden, net als onderzoekend en ontwerpend leren, meestal in één adem genoemd. Dat komt omdat in beide disciplines een stappenplan (vaak aangeduid als ‘empirische cyclus’) gebruikt wordt als heuristiek om structuur te geven aan de activiteiten. Echter de gebruikte methoden zijn niet hetzelfde. Om de belangrijkste overeenkomsten en verschillen te
Elementen in de onderzoeks- en ontwerpcyclus

1) Het probleem: hoewel de onderzoeks- en ontwerpcyclus (Fig.7) dus beiden starten vanuit een probleem is er een fundamenteel verschil in uitgangspunt en ook het doel van de cyclus. In de onderzoeksacyclus is het uitgangspunt een observatie die niet past binnen de feitelijke kennis over een object of proces. Bijvoorbeeld: de observatie dat water in een berg-rivier sneller stroomt dan in een dal-rivier van dezelfde breedte komt niet overeen met de feitelijke uitspraak ‘in rivieren met een gelijke breedte stroomt het water met een gelijke snelheid’. Het doel van de cyclus is om onze feitelijke kennis over het onderwerp aan te passen of uit te breiden d.m.v. een generaliserende uitspraak. In het voorbeeld zou een uitbreiding kunnen zijn: ‘in rivieren met eenzelfde breedte en eenzelfde heidingshoek stroomt het water met gelijke snelheid’.

In de ontwerpcyclus is het uitgangspunt een situatie waarbij de (materiële) feiten niet voldoen aan de voorwaarde (eisen) die aan deze feiten gesteld worden. Bijvoorbeeld: ‘hoe kan op een basisschool getest worden of water sneller stroomt bij een steilere heidingshoek?’ Het doel van deze cyclus is om de feiten (stroomsnelheid) aan te passen aan de voorwaarde (moet plaatsvinden op school) door het ontwerp van een object. Hier wordt uitgegaan van een unieke oplossing voor het probleem. Bijvoorbeeld door het maken van een bak (stroomgoot) met afmetingen die in een klaslokaal passen.

2) Observatie vs. analyse: bij het oplossen van een probleem in de onderzoeksacyclus wordt uitgegaan van het doelgericht verzamelen van gegevens (observatie) die een uitbreiding zijn van bestaande kennis en die verkregen kunnen worden door experimenten. ‘Stroomsnelheid van water in verschillende rivieren met verschillende bodemsamenstelling wordt vergeleken’. In de ontwerpcyclus werkt dit tweede element anders omdat het ontwerp gericht is op mogelijke (maar niet bestaande) oplossingen en er dus nog niets te observeren is. Wat men wel kan doen is beredeneren (analyseren) onder welke voorwaarden (eisen) een oplossing wenselijk en realiseerbaar is. ‘De stroomgoot moet waterdicht zijn, maar mag niet te zwaar zijn vanwege de constructie van de onderliggende tafel’. Regelmatig komt het voor dat men er tijdens de analyse achter komt dat er te weinig kennis is om de analyse goed uit te kunnen voeren (en dat de ontbrekende kennis niet altijd in literatuur beschikbaar is). In dat geval moet er een overstap gemaakt worden naar de onderzoeksacyclus om de vereiste kennis te verzamelen. Bijvoorbeeld wat is een goed materiaal om de bak waterdicht te maken (observaties naar waterafstoting van materialen: lijm, kit, etc.)?

3) Inductie vs. synthese: bij inductie wordt vanuit (een beperkt aantal) observaties overgegaan op een algemene uitspraak. ‘Als berg-rivieren van een bepaalde breedte met een zand-, klei- en grindbodem sneller stromen dan dal-rivieren met dezelfde samenstelling kan men generaliseren dat ‘stroomsnelheid in berg-rivieren zonder vegetatie hoger is dan in dal-rivieren’. Inductie streeft naar algemeen geldige uitspraken (stroomsnelheid is hoger) over een specifiek deel van de werkelijkheid (rivieren zonder vegetatie). Men gaat eerst uit van de werkelijkheid (observaties) waarna vervolgens een beeld wordt gevormd van dat specifieke deel van de werkelijkheid.

In de praktijk wordt in veel onderzoekscycli het recept van aanloop naar inductie (stap 1 t/m 3)
Uit het voorgaande kunnen we concluderen dat deductie in de onderzoekscyclus leidt tot een verklaring of categorische voorspelling van deel van de werkelijkheid, terwijl deductie in de ontwerpcyclus leidt tot een verklaring of een categorische voorspelling van een deel van de werkelijkheid, meestal in de vorm van een hypothese.

In de onderzoekscyclus leidt deductie tot een verklaring of een categorische voorspelling van een specifiek aspect van de werkelijkheid, meestal in de vorm van een hypothese. ‘Stroomsnelheid is hoger in berg-rivieren dan in dal-rivieren zonder vegetatie (wetmatigheid) kan men deduceren: ‘in berg-rivieren met een rots- of leembodem is de stroomsnelheid hoger dan in dal-rivieren (deductie van verschijnselen)’; want rots- en leembodems hebben geen vegetatie. Voorspellingen zijn toekomstige deducties die worden afgeleid uit bestaande verschijnselen en hebben typisch een: ‘als…, dan…’ vorm. Als ik de stroomgoot dichtmaak met spijkers (toekomstige deductie), dan zal de vloer straks onder water staan’, want spijkers maken de got niet waterdicht (bestaand verschijnsel).

Hoewel dit vierde element dus in beide cycli uitgaat van deductie is er een verschil in terminologie om aan te geven dat de basis en het resultaat van de deductie verschillen. In de onderzoekscyclus leidt deductie tot een verklaring of een categorische voorspelling van een specifiek aspect van de werkelijkheid, meestal in de vorm van een hypothese. ‘Stroomsnelheid is hoger in berg-rivieren (categorische voorspelling) met een zand-, klei-, rots- of grindbodem’ (deel van de werkelijkheid). In de ontwerpcyclus kunnen we niet gelijk met deductie beginnen omdat het resultaat van de voorafgaande synthese-fase slechts één ontwerpvoorstel (beschrijving van een product) oplevert en van daaruit geen deductie mogelijk is. We moeten dus eerst een aantal modellen van het product (simulaties) maken voordat we het toekomstige gedrag van het product kunnen deduceren. In deze simulatie-fase wordt verkend hoe het product zich zou gedragen als we het zouden maken, waarbij naar zoveel mogelijk aspecten van het ontwerp wordt gekeken (o.a. functionaliteit, veiligheid, kosten etc.). Dit kan er bijvoorbeeld toe leiden dat het oorspronkelijke ontwerpvoorstel (stroomgoot met spijkers) verlaten wordt omdat het niet aan het volledige programma van eisen (waterdichtheid) voldoet. De simulatie bestaat dus uit (mentale en/of materiële) verkenning van mogelijke ontwerpen die het gedrag van het ontwerp (product) bepalen.

Uit het voorgaande kunnen we concluderen dat deductie in de onderzoekscyclus leidt tot een verklaring of categorische voorspelling van een deel van de werkelijkheid, terwijl deductie in de ontwerpcyclus leidt tot een hypothetische voorspelling (simulatie) van waaruit deductie mogelijk is. Daarmee blijkt dat de simulatiefase in de ontwerpcyclus één element meer bevat dan de deductiefase in de onderzoekscyclus. Tevens zien we hier dat in hun theorieën wetenschappers veelal streven naar een hoog verklarend gehalte, terwijl ontwerpers volstaan met een hoog voorspelling gehalte.

5) Testen vs. evaluatie: in de testfase van de onderzoeks cyclus worden feiten (verzameld door observaties uit experimenten) vergeleken met de voorspelling (hypothese). ‘Stroomt water in een goot met een zand, klei, of grindbodem en een grote hellingshoek daadwerkelijk sneller dan een vergelijkbare goot met een kleinere hellingshoek?’. Feiten en voorspellingen worden in deze fase vergeleken en beoordeeld op hun waarde. ‘Hoe groot is het verschil en is dat voldoende om de algemene wetmatigheid (stroomsnelheid is hoger in bergrivieren zonder vegetatie) aan te passen?’

In de parallelle evaluatiefase in de ontwerpcyclus wordt er ook een vergelijking gemaakt, maar in dit geval tussen de simulatie(s) van het gedrag van het product (stroomgoot met spijkers, lijm, kit) en het gewenste gedrag van het product (moet waterdicht zijn). In deze fase wordt de waarde het ontwerpvoorstel geëvalueerd en gekeken in hoeverre het voldoet aan het programma van eisen.

6) Evaluatie vs. beslissing: verassend genoeg bestaat dit element in de onderzoeks cyclus uit een evaluatie en in de ontwerpcyclus uit een beslissing. De keuze voor deze begrippen is gebaseerd op de gebruikelijke terminologie in de wetenschap en technologie, die vervreemd eenvoudig is. Deze fase in de onderzoeks cyclus evalueert niet alleen (resultaat van het proces tot nu toe), maar bevat ook een beslis-aspect. Namelijk, hebben we voldoende observaties/resultaten om te kunnen beoordelen of we het doel (vergaren van meer kennis) bereikt hebben. Of moeten hiervoor nog nieuwe experimenten (van rivieren met verschillende ondergronden) of meer waarnemingen gedaan worden? Waarmee de cyclus weer naar eerdere elementen in de cyclus teruggaat en deze opnieuw doorlopen worden (zie terugkoppelingsspijlen in Fig. 7). Als de evaluatie naar tevredenheid is verlopen, dan wordt nieuwe kennis toegevoegd aan het bestaande kennisgebied (veelal in de vorm van een wetenschappelijke publicatie).

De beslissing waardoor dit zesde element in de ontwerpcyclus gekenmerkt wordt is niet exclusief voor deze fase. Beslissingen worden op vele plaatsen in de cyclus gemaakt. Bijvoorbeeld in de analysefase (welke eisen wegen zwaarder – waterdichtheid of gewicht van de stroomsnelheid?) of bij de keuze voor een ontwerpvoorstel of het aantal simulaties (zie terugkoppelingsspijlen in Fig. 7). De uiteindelijke beslissing verwijst hier naar de keuze voor het meest geschikte ontwerp uit alle alternatieven. Dat ontwerp zal uiteindelijk gemaakt worden tot een product. In hoeverre het te realiseren ontwerp voortkomt uit mentale dan wel materiële cycli hangt sterk samen met pragmatische aspecten zoals kosten en gemak gerelateerd aan de materiële realisering. Een nieuwe balpen wordt uitgebreid geprototypeerd, een nieuwe oletank niet.

Verschillen en overeenkomsten tussen wetenschap en onderzoekend en ontwerpend leren

Net als in de wetenschap en technologie kan bij het onderzoekend en ontwerpend leren een onderscheid gemaakt worden tussen onderzoekproblemen (bijv. vragen over stroomsnelheid – opgelost m.b.v. onderzoeks cyclus) en ontwerpproblemen (bijv. het maken van een stroomgoot – opgelost m.b.v. ontwerpcyclus). Gegeven dit onderscheid is ook een duidelijke fasering aan te brengen in de verschillende stappen die met kinderen kunnen worden doorlopen (zie o.a. Schuman, 1963; Llewellyn, 2002; De Vaan en Marell, 2006; Van Graft en Kemmers 2007). Omwille van overzichtelijkheid zijn we in dit voorbeeld slechts uitgegaan van een vergelijking tussen de
wetenschappelijke onderzoeks-/ontwerp cyclus en de onderzoekend leren-cyclus (gebaseerd op van Graft en Kemmers 2007, Fig. 7, rechts). In analogie kan een dergelijke analyse ook gemaakt worden voor de ontwerpend leren-cyclus. De belangrijkste verschillen (gerelateerd aan vaardigheden) tussen de cyclus voor onderzoekend leren en die voor ontwerpend leren zijn weergegeven in tabel 2.

Wanneer we de stappen van de cyclus voor onderzoekend leren uit het project Rivieren en Delta’s (Fig. 7, rechts) vergelijken met de onderzoek- en ontwerp cyclus (Fig. 7 links en midden) dan vallen een aantal dingen op. Bij het onderzoekend leren worden een aantal stappen soms snel doorlopen, terwijl bij andere juist meer expliciet stilgestaan wordt. Bij het onderzoekend leren wordt na de confrontatie met een probleem (in praktijk meestal door de leraar, maar kan ook op basis van verwondering van kinderen zelf) vrij snel overgegaan tot het stellen van vragen en het formuleren van hypothesen (verkenning). Hiermee worden de fasen observatie en inductie (die uitgaan van een bepaalde mate van voorkennis en modelvorming, zie 2.2.3) uit de onderzoeks cyclus overgeslagen. Dit kan zonder al te veel problemen, mede omdat de problemen waar kinderen mee werken in het algemeen niet nieuw zijn voor de wetenschap en het ook niet erg is wanneer kinderen iets ontdekken wat al bekend is. Het vereist wel dat de leerkracht / begeleider enige kennis heeft (of kan verzamelen) van de algemene wetmatigheid waaraan gewerkt wordt, zodat daarnaar verwezen en gevraagd kan worden in een gesprek. Bijvoorbeeld een experiment met stroomsnelheid van water vereist enige basale kennis van krachten en weerstanden die op het water werken. Wanneer de leerkracht de benodigde kennis niet heeft en de leerlingen ook (nog) niet, dan is het noodzakelijk om wel uitgebreid stil te staan bij deze verkenningsfase om leerlingen zelf te laten kennismaken, ontdekken en aansluiten met het onderwerp. Op basis van de observaties in het project Rivieren en Delta’s lijkt de zelfstandige verkennings fase een voorwaarde voor leerlingen om eigen vragen te kunnen ontwikkelen en hun belangstelling en motivatie vast te houden.

Een andere fase die anders wordt doorlopen in het basisonderwijs is de evaluatie-/bessifase. Er wordt wel getoetst of de data in overeenstemming zijn met de hypothese (testfase), maar niet altijd expliciet geëvalueerd of er voldoende data verzameld is of dat meer experimenten nodig zijn. Hier geldt dat het leerproces niet altijd staat of valt met meer of minder experimenten. Evaluatie is bovendien lastig omdat kinderen nog weinig begrip hebben van termen als variatie, validiteit en betrouwbaarheid (reproduceerbaarheid). Dit wil niet zeggen dat deze begrippen niet aan de kinderen kunnen worden toegestaan. Impliciet kan bijvoorbeeld aandacht besteed worden aan reproduceerbaarheid door metingen meerdere keren te laten uitvoeren en de kinderen naar de verschillen te laten kijken. Hierdoor wordt het belang van herhaling duidelijk. Er is bij het onderzoekend leren geen expliciete stap waarbij geëvalueerd of er voldoende data verzameld zijn voor de genereren van nieuwe kennis. Echter, de (voor de kinderen) nieuwe kennis uit de experimenten wordt wel gerapporteerd en gebruikt om nieuwe vragen te genereren en weer terug te gaan naar stap 1 in de cyclus. Ook hier zien we dus dat, net als in de onderzoeks- en ontwerp cyclus, fasen meerdere keren doorlopen worden.

Fasen waarbij juist meer uitgebreid wordt stilgezet in het onderzoekend leren zijn afhankelijk van de leeftijd, dat wil zeggen onder andere het cognitieve vermogen en de reken- of taalvaardigheid van de kinderen. In groep 1-4 is er bijvoorbeeld nadruk gelegd op stap 1 en 2 (introductie en verkenning), waarbij het met nadruk gaat over hoe je nu een grote vage vraag inperkt tot een onderzoekbare vraag. De overige stappen worden wel doorlopen, maar er wordt minder of zelfs geen aandacht aan besteed. In groep 7-8 is juist extra aandacht op zijn plaats voor de communicatie over de resultaten (rapportage) met behulp van bijvoorbeeld PowerPoint, waarbij expliciete aandacht is voor nauwkeurige en waarheidsgetrouwe verwerking van de resultaten en overzichtelijk en duidelijk presenteren. Bovenstaande laat ook zien dat de fasering van de onderzoeks cyclus een heuristiek is en dus tamelijk arbitrair is, en dat afhankelijk van bijv. leeftijd, cognitieve ontwikkeling of beschikbare tijd zelf een keuze gemaakt kan worden voor een cyclus, mits deze consistent is en alle vaardigheden aandacht krijgen.

2.2.3 – Type onderzoek en vragen

Relevante en functie van de vraag voor kinderen

Twee essentiële kenmerken van goede wetenschappelijke onderzoeksvragen zijn het belang voor wetenschap en/of maatschappij en het type vraag. Een wetenschappelijk onderzoeker zal pas een vraag gaan onderzoeken wanneer hij/zij ervan overtuigd is dat er nog geen antwoord bekend is en dat het beantwoorden ervan ook een zekere waarde heeft in wetenschappelijke of maatschappelijke zin (relevantie). In analogie met wetenschappers lijkt het er in het project Rivieren en Delta’s op dat kinderen vooral enthousiast worden bij vragen die de (zelf) terugvragen (en dus voor henzelf relevant zijn - zie kader ‘vragen, observeren en redeneren met kinderen’). In andere woorden: vinden ze het leuk (sluit het aan bij behoefte) en kunnen ze er wat mee (heeft het betekenis)? Wetenschappers vinden dit natuurlijk ook belangrijk, maar vinden het doorgaans ook belangrijk om hun kennis te delen, iets te bereiken, en kritisch te zijn tegenover bestaande kennis. Lang niet alle kinderen zullen deze disposities ontwikkelen (Van der Rijst 2009).

Met het type onderzoeksvraag wordt bedoeld wat de functie is van de vraag, bijvoorbeeld een beschrijvende, vergelijkende, verklarende of ontwerpende functie (Oost en Markenhoef 2010). In het kader over de ‘Wetenschap achter de activiteiten’ (zie deel 1) wordt als eerste hoofdvraag gesteld hoe verschillende patronen in rivieren en delta’s op Aarde precies ontstaan (verklaringsvraag). De hoofdvraag uit een gerelateerd project is wat voor afzettingen ze achterlaten (beschrijvende vraag). In het project met onderzoek op Mars in combinatie met een stroomgootexperiment werd gekeken naar verschillen in delta’s op Aarde en Mars (vergelijking vraag) en geprobeerd een verklaring te vinden voor de snelheid en ontstaan van de vorm van de delta’s op Mars (verklaringsvraag). Een voorbeeld van een ontwerpvraag is welke aanpassingen moeten worden gemaakt in het stroomgootmodel om het te kunnen gebruiken voor het meten van stroomsnelheid. Afgaande op de stroomgootexperiments lijkt het er dus op dat vragen met een beschrijvende, vergelijkende, verklarende of ontwerpende functie zich lenen voor vertaling naar het primair onderwijs. Vragen die minder geschikt lijken te zijn, zijn bijvoorbeeld vragen met een definierende, of evaluierende functie. Een belangrijke (voor kinderen te complexe) evaluierende vraag bij de experimenten van Van Dijk et al. (2013) is welke aspecten van de ontstane rivieren natuurgetrouw zijn en welke aspecten ontstaan omdat de rivieren zijn verkleind tot de schaal van de stroomgoot. Dit bepaalt welke aspecten kunnen worden gebruikt voor voorspellingen over het gedrag van natuurlijke rivieren.

Gezien het kleine aantal voorbeelden in deze casus is enige voorzichtigheid over de gedane
uitgespraken hier op zijn plaats en kan niet zomaar geconcludeerd worden dat vragen met een beschrijvende, vergelijkende of verklarende functie per definitie geschikt zijn voor vertaling naar het basisonderwijs. Naast de functie van de onderzoeksvraag zouden bijvoorbeeld beperkingen in de keuze voor type onderzoek ook gerelateerd kunnen zijn aan de hoeveelheid benodigde theoretische kennis, uitdrukkingvaardigheden en cognitieve vermogens die kinderen (nog) niet voldoende ontwikkeld hebben (zie onder o.a. bij 2.2.4).

Belang van enkelvoudige hypothese en controle-experiment

Kinderen willen van alles weten, maar de vragen die ze stellen zijn veelal niet (experimenteel) te toetsen omdat de vraag dermate complex is dat er geen enkelvoudige hypothese geformuleerd kan worden. In dat geval moet de vraag uitgepeld en ingeperkt worden, waarbij slechts één variabele gewijzigd wordt en een eerlijke vergelijking mogelijk is, bijvoorbeeld met behulp van een controle-experiment. Het inperken van de onderzoeksvraag is voor kinderen een lastig proces en wordt gedaan onder begeleiding van een ernaar / wetenschapper die hierbij vooral vragen stelt en denkprocessen stimuleert (zie Fig. 5b en par. 2.2.6 begeleiding en interactie). Een belangrijke reden dat kinderen dit inperken van vragen niet zelf kunnen liggen in het feit dat het belang van enkelvoudige hypothesen en controle-experiment bij kinderen (in het voortgezet onderwijs) mogelijk nog geen functionaliteit heeft (Schalk 2006, dissertatie HS). Kahnemann (2002) wijst er op dat mensen gemakkelijk geneigd zijn generaliserende conclusies te trekken uit een zeer beperkt aantal waarnemingen, en dit geldt zeker voor kinderen. Het vergroten van de geloofwaardigheid van een conclusie is echter wel een belangrijke stap voor het onderzoekend leren, en dat dit begrip (nog) niet operationeel is betekent niet dat kinderen de redenering niet kunnen volgen. Zoals Schalk met een bekend gezegde in zijn proefschrift verwoord: “Denkt aleer gij doende zijt en doende denkt dan nog”. Hij doelt hiermee op het belang van leren door te doen en verwoord dat als volgt: “Eerst moet je kennis nemen van de criteria voor goed onderzoek alvorens je ze kunt toepassen. Die invalshoek wordt ook bepaald door een aantal auteurs, waarvan Richard Gott de belangrijkste is (zie bijvoorbeeld Millar e.a., 1994; Gott & Duggan, 1995b; Gott & Roberts, 2003; Jones & Gott, 1998). Zij benadrukken dat procedurele kennis (het weten hoe) een aparte kennisbasis is die gelijkwaardig is aan vakinhoudelijke kennis. En omdat het kennis is, moet het volgens hen ook expliciet onderwezen worden. Dat betekent echter niet dat de criteria als reproduceerbare kennis aangeboden en overhaad moeten worden. Het gaat erom dat je ze kunt gebruiken”.

Volgens Ballin (2002) zijn de belangrijkste criteria (zie citaat) in natuurwetenschappelijke context gerelateerd aan begrippen als ‘conclusie’ en ‘oorzaak en gevolg’ en aan principes als ‘testen van hypothesen’. Schalk stelt vervolgens dat expliciet aandacht besteed moet worden aan deze criteria door het uitleggen of toepassen ervan. Hoewel de hoeveelheid beschikbare literatuur beperkt is en overwegend gebaseerd op meer gevorderd dan primair onderwijs, zouden we op basis van het bovenstaande en de observaties in het project Rivieren en Delta’s kunnen afleiden dat expliciete aandacht voor hypotheseformulering en ontwerp van testuitingen zinvol is, zelfs bij jonge kinderen. Het gaat hierbij dan vooraleer aan het doorlopen van het proces dat is gericht op het herkennen van procedurele componenten, het praktisch handelen en het ontwerpen en uitvoeren van een testuiting (zie 2.2.6 denken vs. handelen).

Literatuur, theorie, model, vraag en hypothese

Aan de basis voor de aanpak van een probleem of een vraag staat een hypothese (onderzoeken) of een ontwerpvoorstel (ontwerpen), die of dat altijd kennis geladen is (theorie – ‘feiten’ en ‘eisen’ in respectievelijk onderzoeks- en ontwerp cyclus, Fig. 7). Wetenschappers baseren deze kennis voor een deel op ervaring (voorkennis), maar ook op beschikbare literatuur. Vervolgens worden gedachten gevormd en hypothesen geformuleerd die systematisch getoetst worden. Kinderen hebben minder kennis (zowel ervaring als beschikbare literatuur), met als gevolg dat hun hypothesen en vragen veelal gericht zijn op het direct ervaarbare. Bijvoorbeeld: ‘welke dam zal eerder doorbreken, een brede of een smalle?’. Kinderen kunnen problemen met complexere, want niet-direct ervaarbare aspecten, wel begrijpen en met behulp van aangereikte theorieën categoriseren (bijv. op basis van vorm-functie / oorzaak-gevolg). Echter, het lijkt erop dat kinderen (ook in het voortgezet onderwijs) nog niet goed in staat zijn om op basis van observaties of door inductie verkregen patronen te komen tot een theoretisch begrip van een verschijnsel (Boersma 2011, p.112). De aanpak van een probleem of hypothese lijkt bij kinderen dan ook vooral gericht op direct handelen (het aanrommelen / trial-and-error) in plaats van systematisch en doordacht testen van een hypothese. Opvallend genoeg lijkt in situaties waarin wetenschappers weinig theoretische kennis of experimentele gegevens tot hun beschikking hebben, hun werkwijze meer overeenkomsten te vertonen met die van kinderen, in die zin dat net als bij kinderen, meer exploratief en handelend naar de oplossing van een probleem wordt gekeken (Kleinhans, Bierkens en van der Perk 2010).

2.2.4 – Reductie van complexiteit in inhoud en uitdrukkingvaardigheden

Observeren, verklaren, redeneren en conceptontwikkeling door kinderen

Kinderen nemen elke dag verschijnselen waar uit de wereld om hen heen en op basis daarvan vormen zij zich beelden en verklaringen over hoe de wereld in elkaar zit. Verschijnselen die telkens in een bepaalde samenhang met activiteiten worden waargenomen worden gekoppeld en zo ontwikkelt zich het causale denken. In een later stadium verwoorden ze ook
uitdrukkingsvaardigheden bij kinderen minder ontwikkeld zijn dan bij volwassenen, lijkt het erop (motorisch, mondeling, schriftelijk, cognitief, sociaal, etc.). Hoewel denkvermogen en
De mate waarin kinderen conceptontwikkeling laten zien is gerelateerd het vermogen om
Complexiteit en uitdrukkingsvaardigheden
2003). Daarmee kan het doorlopen van de onderzoeks- of ontwerpcyclus bijdragen aan ‘wat het
kennis mee te verwerven is echter wel in hoge mate afhankelijk van coaching door de leerkracht,
observeren en redeneren met kinderen in deel 1). Voorbeelden van vragen en opdrachten op
om relaties tussen vorm en functie, deel en geheel of oorzaak en gevolg (zie ook kader vragen,
sommige domeinspecifieke denk- en werkwijzen (perspectieven) waarmee wetenschappers
wel wat te zeggen is. Wat kinderen echter wel lijken te kunnen, is handelend werken met
complexe werkelijkheid die kinderen willen onderzoeken voor elke verklaring en elke hypothese
wel wat te zeggen is. Wat kinderen echter wel lijken te kunnen, is handelend werken met
sommige domeinspecifieke denk- en werkwijzen (perspectieven) waarmee wetenschappers
in hun beroepspraktijk verscheidensel benaderen (Boerwinkel 2003). Het gaat dan bijvoorbeeld
om relaties tussen vorm en functie, deel en geheel of oorzaak en gevolg (zie ook kader vragen,
observeren en redeneren met kinderen in deel 1). Voorbeelden van vragen en opdrachten op
basis van dergelijke perspectieven zijn uitgewerkt voor natuuronderwijs (Boerwinkel 2003) en
techniekonderwijs (Kemmers en van Graft 2007). Het gebruik van deze perspectieven om nieuwe
kennis mee te verwerven is echter wel in hoge mate afhankelijk van coaching door de leerkracht,
de voorkennis van leerlingen en de opvattingen van leerlingen over kennis en leren (Boerwinkel
2003). Daarmee kan het doorlopen van de onderzoeks- of ontwerpcyclus bijdragen aan ‘wat het
is om een wetenschapper te zijn’ (Gott en Duggan 1996, Gott et al. 1999).

Complexiteit en uitdrukkingsvaardigheden
De mate waarin kinderen conceptontwikkeling laten zien is gerelateerd het vermogen om
kennis in verschillende contexten toe te passen en aan hun uitdrukkingsvaardigheden
(motorisch, mondeling, schriftelijk, cognitief, sociaal, etc.). Hoewel denkvermogen en
uitdrukkingsvaardigheden bij kinderen minder ontwikkeld zijn dan bij volwassenen, lijkt het erop
dat ze al op jonge leeftijd in staat zijn de materiële werkelijkheid waar te nemen en te begrijpen
(o.a. Karmiloff-Smith 1992, Cognik 2012). Kinderen lijken al vanaf een leeftijd vanaf ongeveer 1
jaar in staat te zijn om oorzaakelijke verbanden te leggen op basis van onverwachte patronen
(Xu en Garcia 2008). Onderzoek in het Britse primair onderwijs heeft laten zien dat: 1) kinderen
in staat zijn om taal op een efficiënte manier te gebruiken als middel voor wetenschappelijk
redeneren en 2) taal gerelateerde activiteiten een bijdrage kunnen hebben bij het redeneren en
begripsvorming (Mercer et al. 2004). Daarom is in het project Rivieren en Delta’s ook speciale
aandacht besteed aan de stappen in de empirische cyclus die aan de basis liggen van het
redeneren en begripsvorming (o.a. nauwkeurig meten, huld en overzichtelijk rapporteren en
 presenteren). Ook maakt deze aanpak de interactie met andere domeinen in het basisonderwijs
(o.a. taal en rekenen) mogelijk.

Taal bijvoorbeeld dient, behalve voor communicatie, ook voor het vergaren van nieuwe kennis,
beschrijven van abstractie ideeën en ontwikkelen van (pre)concepten (D’Malley en Chamot
1990). In onderwijsituaties is het voor een dergelijke ontwikkeling wel noodzakelijk dat leraren
hun taal aanpassen aan het globale taalniveau van de leerling, iets waar basisschoolleraren
veel ervaring mee hebben (zie kader ‘vragen, observeren en redeneren met kinderen’). Wanneer
het niveau wordt aangepast kan onderzoekend en ontwerpend leren ook ingezet worden voor
het integreren met leerdoelen uit het taaldomein, bijvoorbeeld door leerlingen te stimuleren
vakspecifieke termen te gebruiken en op die manier bij te dragen aan de academische
geletterdheid. Uit onderzoek is ook bekend dat taal die leraren gebruiken meer uitdagend wordt,
naarmate kinderen ouder worden en grotere cognitieve en taalvaardigheden hebben (Henrichs
2010).

In algemene zin zijn er dus kenmerken van verklaren en wetenschappelijk redeneren die bij
zeer jonge kinderen reeds aanwezig zijn, terwijl anderen nog ontwikkeld moeten worden.
Ontwikkeling van deze vaardigheden vindt reeds plaats op de basisschool en daar zou door
leraren op ingespeeld kunnen worden. Er zijn bijvoorbeeld verschillen in het herkennen en
bijbehorende capaciteiten van kinderen. Dat kinderen uit groep 5-8 in vergelijking met jongere
kinderen (groep 4 en lager) onder andere beter complexere problemen kunnen oplossen,
oorzaakelijke verbanden leggen, metaforen begrijpen en analogisch redeneren (Siegl er & Albali,
2005) is niet alleen een kwestie van groei en ouder worden, maar van ontwikkeling onder
invloed van vaardigheden en handelingen. Kinderen lijken in tegenstelling tot wetenschappers
geen intrinsieke drang te hebben om dingen te willen begrijpen, maar ze kunnen wel redeneren,
verklaren en observeren. Een vraag blijft wel in hoeverre ze deze vaardigheden spontaan inzetten
in een leersituatie en in hoeverre ze daarbij gefaciliteerd en gestimuleerd moeten worden door
de leraar en/of wetenschapper.

2.2.5 – onderzoekend en ontwerpend leren als doel en middel
Problemen oplossen en leerwinst
In de literatuur en in de klas wordt vooral gesproken van onderzoekend en ontwerpend leren.
Hiermee wordt bedoeld dat kinderen met behulp van een proces (onderzoek doen of ontwerpen)
een vraag beantwoorden of probleem oplossen en daarmee iets leren over de wereld om

Onderzoekend leren kan een manier zijn om aangeleerde concepten te testen of uit te breiden. Wanneer een wetenschapper een experiment wil gaan doen wordt eerst nagegaan wat alommaal bekend is (op basis van literatuur en theorie), men wil immers geen dingen uitzoeken die al gedaan zijn. In het basisonderwijs is dit van ondergeschikt belang, het gaat hier om het generen van kennis die nieuw is voor de leerling. Daarvoor moet bij kinderen wel (net als in de wetenschap) aandacht besteed worden aan wat er bij henzelf bekend is (voor kennis) en of die kennis functioneel is. Het kan leerzaam zijn kinderen een hypothese te laten formuleren die onjuist is en die daarna ontkracht wordt, maar het kan ook zijn dat kinderen gedemotiveerd worden wanneer ze een doodlopende weg inslaan. Kinderen kunnen, net als wetenschappers, onjuiste conclusies trekken en onbruikbare concepten ontwikkelen. Bijvoorbeeld: wanneer water over een dijk heen stroomt kan dat leiden tot de veronderstelling dat water omhoog kan stromen of altijd het hoogste punt opzoekt. Het kan dan zinvol zijn dat de leerling tijdens de verkenningsfase (stap 2, Fig. 7, rechts) bij te sturen door zo’n concept of hypothese kritisch te bespreken.

In de wetenschap wordt vrijwel nooit gerapporteerd wat er fout ging onderweg, de publicaties geven altijd een efficiënte reconstructie van hoe het had kunnen gaan (centraal staat de inhoud – het oplossen van het probleem). Echter in het onderwijs is het juist wel belangrijk aandacht te geven aan wat er mis ging of welke ideeën niet bleken te werken. Het gaat hier vooral om het proces. Daarom is het belangrijk om je als leraar / wetenschapper te realiseren dat onderzoeken of ontwerpen niet gaat om wat je zelf zou willen weten, maar wat het kind zou willen weten. Anders gezegd gaat het dus niet om het genereren van nieuwe kennis voor de wetenschap (voor zover kinderen dat al zouden kunnen), maar om het genereren van nieuwe kennis en vaardigheden voor het kind. Dit wordt het best bereikt door zoveel mogelijk uit te gaan van de nieuwsgierigheid en redenaties van het kind. Wat is de denkrichting van het kind en hoe kun je daar zo goed mogelijk bij aansluiten? Het eindpunt is dan ook tweeledig: (voor het kind) nieuwe kennis of product én wat er geleerd is. Daarnaast zijn doelen van andere domeinen (attitude) ten opzichte van natuurwetenschappelijke en technische onderwerpen (Advies Verkenningsomissie W&T 2013).

2.2.6. – Kenmerken van goed onderwijs in Wetenschap en Technologie

Begin situatie en doelen

Een bekende theorie uit de ontwikkelingspsychologie stelt dat kinderen het beste leren in situaties waarbij er enige overkomelijke frictie is tussen wat ze weten en nieuwe ervaringen (zone van naaste ontwikkeling, Vygotski 1978). In dergelijke situaties waarbij kinderen uitgedaagd worden, maar de oplossing wel binnen bereik ligt, worden nieuwsgierigheid en actie beloond met nieuwe kennis en vaardigheden. De wetenschapper is hier een cultuurdrager die kinderen initieert in een stimulerende leeromgeving die relevant en betekenisvol is voor de leerling (o.a. Parziale & Fischer, 1998). Maar hoe bepaal je als wetenschapper de beginsituatie en zone van naaste ontwikkeling van (een groep) leerling(en)? Zoals in het project Rivieren en Delta’s getoond is, kunnen de stappen uit de empirische cyclus als basis dienen voor het doorlopen van (een serie) les(ken). In essentie kan elk onderwerp als aanleiding worden genomen voor het onderzoekend en ontwerpend leren: een vaag idee, een vraag, een waarneming, of een probleem uit de dagelijkse omgeving, de keuken, natuur, in de klas etc. De vragen of ideeën kunnen zowel vanuit een leerling als een leraar / wetenschapper komen. Belangrijk is wel dat kinderen zich kunnen oriënteren op het onderwerp en eventuele beperkingen die (door de leraar / gebrek aan kennis / aanwezige faciliteiten) worden opgelegd. Hiervoor is het noodzakelijk om vooraf doelen vast te stellen, bijvoorbeeld uit het oogpunt van kennisontwikkeling van het kind (bijv. kinderen kunnen uitleggen welke dam als eerste doorkruipt, een brede of een smalle). Dit zijn inhoudelijke doelen. Daarnaast zijn doelen van belang die uitgaan van het proces van onderzoeken en ontwerpen (bijv. leerlingen kunnen op basis van waarnemingen een grafiek maken). Er zijn doelen met betrekking tot andere domeinen (taal en rekenen – zie tabel 2) en hogere cognitieve en sociale vaardigheden (bijv. leerlingen kunnen overleggen en voortbouwen op elkaars ideeën), die nodig zijn om ze voor te bereiden op de 21ste eeuw.

Interactie tussen onderzoeken en ontwerpen

Hoewel in de literatuur over wetenschap en technologie een onderscheid gemaakt wordt tussen de onderzoek- en ontwerpcyclus is er in de praktijk regelmatig een interactie te herkennen.
Interactie tussen denken en handelen

In de onderzoeksycclus omvatten veel van de stappen mentale voorstellingen van de werkelijkheid en is er een grote plaats voor conceptueel denken. In de ontwerpcyclus is er een grote rol voor materiële realisering en lijkt handelen voorop te staan. Dit wil echter niet zeggen dat er een exclusieve scheidin is tussen denken en doen in de cycli. Er is een continue wisselwerking, waarbij denken leidt tot doen en de effecten van het doen het denken weer beïnvloeden. De interactie tussen beide processen zijn essentieel voor zowel het onderzoeken als het ontwerpen. Zonder denken geen programma van eisen of evaluatie van het resultaat in het ontwerproces; zonder doen geen dataverzameling in het onderzoeksproces. Bij het onderzoekend en ontwerpend leren lijkt het dan ook niet altijd zinvol om het onderscheid tussen beide cycli heel scherp te maken, mede omdat er veel productieve overeenkomsten te herkennen zijn, zoals bijvoorbeeld nadenken, theoretische kennis gebruiken, uitproberen, waarnemen, evalueren, redeneren, meten en concluderen. De leerlengte van deze vaardigheden (het proces) wordt niet groter door een strikte scheiding aan te houden (Harlen 1985; Next Generation Science Standards 2013).

Vraag-gestuurde leren en motivatie

Voor wetenschappers is het genereren van vragen een vanzelfsprekendheid en een soort tweede natuur geworden. Goede vragen nodigen uit tot nadenken, zijn prikkelend en uitdagend van vorm en komen voort uit een intrinsieke motivatie, d.w.z. verwondering, betrokkenheid en nieuwsgierigheid om meer van een onderwerp te willen weten en te begrijpen. Ook voor wetenschappers is het proces om tot een antwoord te komen vaak interessanter en belangrijker dan het antwoord zelf. En vaak is het nieuwe feit zelf niet zo interessant, maar wordt het gebruikt om te toetsen of de bestaande theorie juist of niet nog bijgesteld moet worden: Vragen stellen kost tijd, maar het belang hiervan staat voor wetenschappers niet ter discussie. In het basisonderwijs wordt de vraagafase vaak overslagen, meestal uit angst voor controleverlies of gezichtsverlies van de leerkracht, ongeacht vanwege strakke planningen en volle programma’s of omdat er in de voorbereiding al besloten is wat kinderen zouden moeten doen. In plaats daarvan heerst een systeem van opdrachten en instructie waarin toewerken naar de goede antwoorden dan hoe moet ik het ontwerp aanpassen om ervoor te zorgen dat het waterdicht wordt?’. Op een hoger abstractionsniveau kunnen observaties uit de stroomgoot (bijv. over het doorbreken van smalle en brede dammen) gekoppeld worden aan onderzoeksvragen en modellen die de grote ideeën uit de wetenschap (zie par. 2.1.2) toegankelijk kunnen maken. Bijvoorbeeld bij de Deltawerken; als we een dam in de natuur verbreden of verhogen, dan verwacht ik dat het achterliggende gebied beter beschermd wordt tegen overstromingen.
dat ze daarnaar gevraagd hebben. Hierdoor leren kinderen niet hoe ze zichzelf in een open situatie kunnen aansturen maar ze richten zich geheel op wat er van hen verwacht wordt. ‘Hoe ik het zo goed?’ is dan de vraag die kinderen gaan stellen. Instructie en gesloten opdrachten zijn gebruikelijk in het onderwijs omdat het een efficiënte manier lijkt om kennis over te dragen, en dit ook kan zijn wanneer feiten belangrijk en begrijpelijk genoeg zijn en de leerlingen die feiten ook echt willen weten. Aan de andere kant werkt deze vorm vaak negatief in op de intrinsieke motivatie omdat er een lage betrokkenheid is (bijv. het belang van het antwoord is niet duidelijk), de eigen nieuwsgierigheid niet aangesproken wordt, en de leerlingen weinig controle hebben over wat ze moeten doen.

Type vragen en antwoorden

Een mogelijke reden waarom in het basisonderwijs weinig vraag gestuurd wordt gewekt heeft te maken met de aard (type) van de vragen en antwoorden. In tegenstelling tot in de wetenschap wordt in het onderwijs vooral vragen gesteld waarop (voor de leraar) het antwoord al bekend is. Het genereren van nieuwe onderzoeks vragen (waarop nog geen antwoord bekend is) vereist:

1. dat de leraar bekend is met manieren om zelf antwoorden te genereren op nieuwe vragen (m.b.v. empirische cyclus)
2. dat de leraar weet welke type vragen aan de leerlingen gesteld kunnen worden in de verschillende fasen van de empirische cyclus (Fig. 5b)
3. een andere didactische aanpak dan de meeste leraren gewend zijn: waarbij kinderen (gedeeltelijk) bepalen wat er gebeurt in de les, begeleiding vooral gericht op het aanmoedigen en stimuleren van denkprocessen

Wanneer niet aan bovenstaande eisen wordt voldaan, bestaat het risico dat te veel wordt vastgehouden aan een kookboekachtige vorm van onderzoek doen waarbij de uitkomsten al vastliggen. Dit roept de vraag op in hoeverre je dan nog kunt spreken van onderzoek? Aan de andere kant van het spectrum is het ook niet wenselijk leerlingen al te veel vrij te laten in het grote verscheidenheid aan onderzoeks- en ontwerpvragen met evenzovele strategieën, oplossingen en antwoorden als resultaat. Dit roept de vraag op hoe een leerling dan zo goed mogelijk begeleiden kan worden bij het doen van onderzoek?

In de literatuur wordt regelmatig gewezen op het belang aan het stellen van de juiste vragen bij het doen en het begeleiden van onderzoek (vgl. Colburn 2000). Bij het doen van onderzoek gaat het om vragen die (meestal) door de leerling gesteld worden, in het algemeen om problemen op te lossen en de wereld te begrijpen. Bij het begeleiden van onderzoek gaat het om vragen die door de leraar gesteld kunnen worden en die sturen op het ontwikkelen van kennis en vaardigheden. Uit de voorbeelden (zie kader ‘vragen, observeren en reageren met kinderen’) en ook uit de literatuur blijkt dat kinderen (net als wetenschappers) goed in staat zijn om in verschillende fasen van de empirische cyclus vragen te stellen, antwoorden en verklaringen te bedenken en zelfs nieuwe vragen te genereren, mits ze daarbij met op de juiste manier gestuurd worden met specifieke vragen (Fig. 5b, Kemmers en van Graaf 2007). Een andere voorwaarde is dat de vragen concreet zijn en gerelateerd zijn aan toegankelijke een betekenisvolle situaties (context) (Boerwinkel 2003, Carey 2009, Piaget 1929). Een belangrijk verschil met wetenschappers is bijvoorbeeld dat de vragen van kinderen veelal heel open en explorerend zijn (bijvoorbeeld hoe

werkt dit...?, of hoe zit dat...?) en niet gericht zijn op het toetsen van een mogelijke verklaring (‘zou het kunnen dat het werkt omdat het ...?’). Om kinderen zo goed mogelijk te ondersteunen en stimuleren om zelf de problemen op te lossen is het noodzakelijk dat de leraar / wetenschapper de gestelde vragen beantwoord met wedervragen. Deze wedervragen moeten enerzijds zoveel mogelijk gericht zijn op het denken, redeneren, waarnemen, handelen en aanmoedigen en juist niet op reproductie van feiten (testvragen). Anderzijds moeten de vragen specifiek gerelateerd zijn aan een de context en leerlingen uitdagingen aspecten van die context te betrekken in hun vraagformuleringen. Bovenstaande punten hebben een aantal belangrijke consequenties. Leraren moeten zich leren realiseren dat kinderen (mede) bepalen op welke manier onderzocht of ontwikkeld wordt en dat er veel verschillende goede vragen, werkwijzen en dus ook uitkomsten kunnen zijn. En omdat de uitkomsten minder belangrijk zijn dan het proces, moet de begeleider de zinvolheid van de vragen van de kinderen vooraf beoordelen vanuit het perspectief van het proces; gaat dit een interessant en leerzaam onderzoeksproces worden, of niet?

Terugkoppeling en leeropbrengst

Een belangrijk onderdeel van het leerproces het bespreken van datgene wat door de leerling geleerd is (leeropbrengst). Dit kan van toepassing zijn op alle verkregen leerresultaten, zoals begrip, kennis en inzicht, onderzoeks- en ontwerphaarden of attitude (o.a. initiatief, nieuwsgierigheid) ten opzichte van wetenschap en technologie. Dit heeft als doel om te kijken of de leerling voldoende resultaat behaald heeft en is een middel om een beeld te krijgen van de verworven competenties (Jongerius en Markus 2002). Er kan bijvoorbeeld getoetst worden of concepten correct, bruikbaar ontwikkeld en begrepen zijn. Verder kan er terugkoppeling (feedback) aan de leerling worden gegeven over het geleerde, bijvoorbeeld door kinderen te laten benoemen wat ze begrepen hebben en wat niet. Inhoudelijke feedback en reflectie op het geleerde kan zowel tijdens als na afloop van de bijeenkomst plaatsvinden en levert een belangrijke bijdrage aan de leerresultaten (Hattie 2008, Schalk 2006, Wierdsma 2012).

2.2.7. – Dimensies voor het plaatsen van Wetenschap en Technologie onderwijs in de basisschool

Middelen, materiaal en opdrachten

Vrijwel geen enkele school beschikt over een goed geoutilleerd lokaal voor het doen van onderzoek en het realiseren van technische ontwerpen. Het meeste gebeurt in een gewoon
klaslokaal. Vaak is er wel een handvaardigheidslokaal en een computerlokaal, maar iets meten of iets maken, waar meer voor nodig is dan een stopwatch of een figuurzaag, is vaak lastig. Veel scholen baseren hun wetenschap en techniek activiteiten vooral op de al dan niet toevallig aanwezige methodes, leskisten en techniekdozen (o.a. techniektorens). Het principe van een leskist is dat het een instructie bevat plus al het benodigde materiaal. Vaak is dit materiaal en de instructie geschikt voor onbegeleide zelfverkazzaamheid door een enkele leerling, een tweetal of een klein groepje. Het lesmateriaal is doorgaans erg gesloten en er is weinig eigenaarschap bij de leerling / leraar. Aan het andere eind van het spectrum staan opdrachten die volledig open zijn, waarbij de leerling in grote mate bepaalt wat er gebeurd. Voor open opdrachten geldt dat goed nagedacht moet worden over te behalen resultaten, zelfs in een aannemelfase. Waar leerlingen mee aan de slag gaan moet hen helpen om de gestelde leerdoelen te bereiken. De materialen moeten bijvoorbeeld voor kinderen hanteerbaar zijn en niet te veel aanleiding geven tot het inslaan van zijpaden die te complex zijn. Leerlingen raken dan te veel verward en gefrustreerd, ze raken hun motivatie kwijt en worden uiteindelijk onverschillig. Naar eigen inzicht van het gebaande pad afslaan is leuk, maar verdwalen in een donker bos niet. Veel scholen en leraren zullen het liefst een compromis: wel open en uitdagend voor leerlingen, maar ook voldoende voorspelbaar wat betreft de tijd die het kost en de materialen die voorbereid moeten worden.

Financiële middelen
In het basisonderwijs ontvangen schoolbesturen één budget voor personele en materiële kosten: de lumpsum. Daarnaast ontvangen ze vanaf augustus 2012 een extra bedrag via de regeling prestatiebox primair onderwijs (2012-2016), bedoeld om de prestaties van leerlingen, leraren en schoolleiders te vergroten. Het budget uit de prestatiebox kan onder meer worden ingezet voor taal en rekenen, wetenschap en techniek, cultuureducatie, talentontwikkeling, opbrengstgericht werken en professionalisering van leraren en schoolleiders. Schoolbesturen zijn vrij om te kiezen op welk van bovenstaande thema’s wordt ingezet. In de praktijk betekent dat dat een deel van de middelen beschikbaar zijn voor W&T-onderwijs, terwijl het op andere scholen lijkt alsof er geen middelen beschikbaar zijn (vanwege andere prioriteiten). Gelukkig is er ook met goedkope materialen veel te bereiken (zie voor inspiratie par.1.3).

Locatie
De klas, de school, de schoolomgeving of de wijk bevatten allerlei mogelijkheden voor W&T-onderwijs. Om de beschikbare ruimte zo optimaal mogelijk te benutten zijn er een aantal vragen die je kunt stellen. Hoe wordt omgegaan met inrichting van het klaslokaal (bijv. in belangstellingsohoeken)? Is er een technieklokaal of zijn er lokalen die anders ingericht kunnen worden en kan er met groepen van lokaal gewisseld worden? Hoe wordt de ruimte naast / vlakbij het klaslokaal benut? Is er voldoende ruimte voor interactie tussen leerling(en) en leerkracht? Welk materiaal is beschikbaar en kan werk enige tijd blijven liggen? Welke mogelijkheden biedt het schoolplein en de directe omgeving (denk bijv. aan biologische, natuurkundige, rekenkundige problemen of problemen gerelateerd aan constructies)? Zijn er mogelijkheden tot activiteiten in samenwerking met bedrijven of andere partners (o.a. musea, science- en techno centra, wetenschapknoppunten)? Vaak zal de wetenschapper zelf specialistisch materiaal en apparatuur mee moeten nemen.

Intensiteit en hoeveelheid
Er is een grote verscheidenheid te herkennen in hoeveelheid W&T-aanbod per school. Dat kan variëren van één tot enkele middagen per jaar (het ‘vrijdagmiddag’-concept) tot een wekelijkse confrontatie met W&T, geïntegreerd met taal, rekenen, wereldoriëntatie en of/of extracurriculaire activiteiten. Daarnaast is er ook verschil in de duur van W&T-onderwijs. Sommige scholen kiezen voor korte activiteiten die in één of twee middagen te doen zijn (maar wel op frequentie basis). Aan het andere eind van het spectrum kiezen scholen voor grote intensieve projecten van één of meerdere weken, waar soms de hele school bij betrokken is. Een goed voorbeeld van een zo’n intensief project is beschreven in deel 1 van dit boekje. Themas voor dergelijke intensieve projecten worden veelal afgeleid van de vijf kerngebieden in het W&T-domein (van Keulen 2010). Onderzoeken en ontwerpen lopen hier door elkaar heen en ook is er grote mate van verbinding met andere domeinen in het onderwijs (o.a. taal, rekenen, vakoverstijgende vaardigheden). Een flink aantal scholen doet mee met activiteiten als het landelijke TechniekToernooi of de First Lego League en organiseren daaromheen hun W&T-onderwijs. De grotere science centra zoals Nemo (Amsterdam), Naturalis (Leiden) of Continium (Kerkrade) organiseren regelmatig activiteiten voor het basisonderwijs en dit aanbod wordt in toenemende mate afgenomen.

Differentiatie
Alle kinderen zijn verschillend en onderwijs in wetenschap en technologie biedt uitstekende mogelijkheden om hierop in te spelen (zie ook par.2.2.5). Diversiteit is er op veel gebieden, waarvan de belangrijkste in het basisonderwijs zijn: sekseverschillen, hoog- en laagpresteerders, bepaalde gedragsproblemen (o.a. autisme- en aandachtstoornissen) en verschillen in taal- en rekenontwikkeling. Op de overkoepelende vraag hoe je olie leerlingen positief bij het W&T-onderwijs kunt betrekken wordt ingegaan in twee recente publicaties (De Vries 2010, van Keulen 2011).

Docent
Onderwijs in Wetenschap en Technologie is op basisscholen in handen van verschillende personen. Soms is er één leraar die alle W&T-lessen verzorgt, vaak is er een techniekcoördinator, die de andere leerkrachten helpt en de afstemming in het W&T-onderwijs verzorgt. Op andere scholen zijn deze functies (meer of minder duidelijk) in handen van één leraar. De ervaring leert dat veel scholen het wel belangrijk vinden dat W&T op de basisschool wordt onderwezen, maar dat niet iedereen W&T zelf even leuk vindt, en dat veel leraren het ook een beetje eng vinden om W&T te onderwijzen. In het enthousiasme, vertrouwdeheid en ervaring ligt juist de
kracht van wetenschappers. Om een positieve houding ten opzichte van W&T-onderwijs te stimuleren is het dan ook belangrijk dat bij ontwerp en de uitvoer van een programma ook de leerkrachten en techniekdocenten betrokken worden en meedoen. Op deze wijze wordt de leerkracht gestimuleerd om meer te leren over het vakgebied en een grotere rol te spelen in een volgende les over het onderwerp, zodat de wetenschapper er niet alleen voor staat in de begeleiding. Dit is belangrijk om het onderwijs te verduurzamen: een onbedoeld neveneffect van de wetenschapper in de klas kan zijn dat de leerkracht zich trektrekt en zelf eigenlijk gedeprofessionaliseerd wordt. In aanvulling hierop kan ook worden nagedacht over de wijze waarop bij ouders (en andere externen) belangstelling gewekt kan worden en of er eventueel expertise en ondersteuning geboden kan worden bij bepaalde onderwerpen.

Didactiek
Als leerkracht kun je je volledig leiding hebben en alles bepalen en uitleggen. Aan de andere kant kun je je besluiten om in het geheel geen invloed uit te oefenen en daarmee de sturing volledig aan het kind te laten. Geen van beide uitersten zijn erg effectief voor het bereiken van leerresultaten in het domein W&T. Voor iedere leraar is het steeds weer een afweging: wat doe ik en wat doen mijn leerlingen? Wanneer onderneem ik actie en wanneer is het beter om niets te doen of op indirecte wijze bij te sturen? Het is continu zoeken naar de balans waarbij elke leraar zijn eigen opvattingen of voorkeuren heeft. Het zoeken naar deze balans begint al bij de voorbereiding. Ook al is het niet precies te voorspellen hoe de activiteiten gaan verlopen, door er van tevoren over na te denken kun je als wetenschapper bepalen binnen welke grenzen zijzelf, leerkracht en leerlingen zich gaan bewegen. De ruimte hangt af van de verschillende factoren die in de paragraaf beschreven werden. Uitgangspunt voor de keuzes is het stimuleren van een onderzoekende houding, waarbij enerzijds initiatief en nieuwsgierigheid beloond worden, maar anderzijds schikken de leerkrachten zich positief ontwikkeld?

Integratie
De basisisschool heeft een vol programma. Veel leraren willen wel aandacht besteden aan wetenschap en technologie maar hebben geen idee waar ze de tijd vandaan moeten halen. Het gevolg is veelal dat W&T-onderwijs incidenteel (op een achtermiddag) wordt aangeboden als een onderdeel van de hele schoolagenda. Veel leerlingen hebben echter geen idee waar ze de tijd vandaan moeten halen. Het gezamenlijk opstellen van een begroting voor verbinding met andere doelen (o.a. taal-, reken-, aardrijkskunde, geschiedenis, vakoverstijgende doelen) en daarmee dus geen extra lastig kost. Integratie met andere vormen van onderwijs wordt gedaan op verschillende manieren, bijvoorbeeld door vakken met elkaar te combineren, door projectonderwijs, op het niveau van een enkele les of op het niveau van het hele schoolprogramma. Een meer uitgebreide beschrijving van verschillende vormen waarin integratie van W&T met andere onderwijsdoelen bereikt kan worden is te vinden in het boekje ‘Wetenschap en techniek op de basisschool’, hoofdstuk 9 (van Keulen en Oosterheert 2011).

Leerlijnen
Op sommige scholen lijkt er (ogenschijnlijk) geen samenhang te zitten in de W&T-activiteiten. Op andere scholen is er nagedacht over een goede opbouw en inhoudelijke samenhang van de leerresultaten. Om enige richting te geven aan de manier waarop Wetenschap en Technologie getoetst kan worden en de leerprestaties van leerlingen op waarde geschat kunnen worden zijn vier vertalingen van de leerprestatie van leerlingen) maar bereikt wordt.

Toetsing
Toetsing is een belangrijk, maar tegelijkertijd ook lastig onderwerp in het onderwijs. Belangrijke redenen om te toetsen in het onderwijs zijn de professionele inschatting van het niveau van de leerling (voor collega’s, ouders, inspectie of scholen voor voortgezet onderwijs), de terugkoppeling op het leerresultaat en het motiveren van leerlingen (zie ook par. 2.2.6). Het gaat hierbij om vragen als: ‘wat bereiken we met wetenschap en technologie?’ en ‘hoe kunnen we dat op een goede manier doen?’ Gezien de voorgenoemde variatie in inrichting en uitvoer van W&T-onderwijs zal het duidelijk zijn dat de toetsing ook niet op uniforme wijze plaatsvindt bij alle scholen. Dat hoeft ook geen probleem te zijn zolang het een doel is om de leerling zelf te laten doelen en de leerprestaties van leerlingen op waarde geschat kunnen worden zijn vier vertalingen van de leerprestatie van leerlingen) maar bereikt wordt.

Om enige richting te geven aan de manier waarop Wetenschap en Technologie getoetst kan worden en de leerprestaties van leerlingen op waarde geschat kunnen worden zijn een vier vertalingen van de leerprestatie van leerlingen) maar bereikt wordt. De manier waarop de prestaties van leerlingen worden ingeschat variëren per school, van helemaal niet tot een inschatting op basis van een eigen leerlingsvlojsystemen waarbij de prestaties van de leerling gedurende de gehele scholtijd in een portfolio gedocumenteerd
Wonen. Enkele voorbeelden van gebruikte instrumenten zijn: de Dimensions-of-Attitude (DAS)-vragenlijst (van Aalderen, UTwente) specifiek gericht op attitude, de Vaardigheden Lijst Onderzoeken en Ontwerpen (VLOD – CEDgroep) specifiek gericht op onderzoeksvaardigheden en het Techniek Observatie Instrument (TOI - Talentenkracht / Platform Bêta Techniek) gericht op een combinatie van kennis, vaardigheden en grondhouding van leerlingen. Wat deze instrumenten in enige mate beogen te bereiken is transparantie. Uiteindelijk gaat het erom dat je duidelijk kunt maken wat je doet, hoe en waarom. Als je als wetenschapper erin slaagt om in deze verantwoording niet alleen de leerling en zijn prestaties, maar ook het handelen van de leerkracht, het schoolprogramma en de kenmerken van de school te betrekken, dan neemt je geloofwaardigheid toe, evenals het vertrouwen in de wetenschapper als belangenbehartiger van academisch onderwijs.

Websites

Kerndoelen primair onderwijs

Materialen en Lessuggesties
- www.platfrombetatechniek.nl
- http://wetenschapsknooppunttechnologie.slo.nl
- www.geo.uu.nl/fp/mkleinhans
- De Jonge Akademie on Wheels - http://www.dejongeakademie.nl

Science musea (o.a.)
- NEMO - www.e-nemo.nl
- Naturalis - www.naturalis.nl
- Universiteitsmuseum Utrecht - www.universiteitsmuseum.nl
- Continium Kerkrade - www.continium.nl

Wetenschapsknooppunten
Algemeen - www.wetenschapsknooppunten.nl
Wetenschapsknooppunt Utrecht - www.uu.nl/wetenschapsknooppunt
Wetenschapsknooppunt Radboud Universiteit Nijmegen - www.ru.nl/wetenschapsknooppunt

Literatuur

- Gibson, E.J. (1988). Exploratory behavior in the development of perceiving, acting and the acquiring of
knowledge. Annual Reviews of Psychology, 39, 1-42.
Dit boek is tot stand gekomen in het kader van het programma Kenniscentrum Talentontwikkeling Wetenschap en Techniek (KTW&T) in de regio Midden-Nederland, Wetenschap & Techniek in de Regio Utrecht en mogelijk gemaakt door het Platform Bèta Techniek te Den Haag.

Auteurs
Dr. T. (Tim) van Wessel: Programmaleider Talentontwikkeling Wetenschap en Techniek en onderwijskundig adviseur, Universiteit Utrecht
Dr. M.G. (Maarten) Kleinhans: Universitair hoofddocent (UHD), opleiding Aardwetenschappen, Universiteit Utrecht
Dr. J. (Hanno) van Keulen: Lector Onderwijskundig Leiderschap en Opvoeding Hogeschool Windesheim Flevoland
A. (Anne) Baar MSc: Aardwetenschappen, Universiteit Utrecht

Ontwerp en Vormgeving: Plan B Amsterdam, Bert van Zutphen

Fotografie: Mirjam Bastings, Karola Vries, Sonnenborgh en anders afkomstig uit "Talent Ontwikkelen met W&T" H. van Keulen en Yvette Sol

Uitgave: Centrum voor Onderwijs en Leren, Universiteit Utrecht Heidelberglaan 1 | Postbus B0127, 3508 TC Utrecht | T. 030 253 3224 | www.uu.nl/onderwijsadviesentraining/po |

© Onderwijsadvies & Training, Centrum voor Onderwijs en Leren Universiteit Utrecht

ISBN 978 90 819 1571 7 Eerste druk juli 2014

Met dank aan leerkrachten, ondersteuners en kinderen van de basisschool PCB De Klokbeker in Ermelo.
WETEN SCHAPPEN IN DE KLAS